arm-crypto-lib/cast5/cast5.c

343 lines
11 KiB
C

/* cast5.c */
/*
This file is part of the ARM-Crypto-Lib.
Copyright (C) 2006-2010 Daniel Otte (daniel.otte@rub.de)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* \file cast5.c
* \author Daniel Otte
* \email daniel.otte@rub.de
* \date 2006-07-26
* \par License:
* GPLv3 or later
* \brief Implementation of the CAST5 (aka CAST-128) cipher algorithm as described in RFC 2144
*
*/
#include <stdint.h>
#include <string.h>
#include "cast5.h"
#include "config.h"
#undef DEBUG
#ifdef DEBUG
#include "cli.h"
#endif
#include "cast5-sbox.h"
#define S5(x) (s5[(x)])
#define S6(x) (s6[(x)])
#define S7(x) (s7[(x)])
#define S8(x) (s8[(x)])
static
void cast5_init_A(uint8_t *dest, uint8_t *src, bool bmode){
uint8_t mask = bmode?0x8:0;
*((uint32_t*)(&dest[0x0])) = *((uint32_t*)(&src[0x0^mask]))
^ S5(src[0xD^mask]) ^ S6(src[0xF^mask])
^ S7(src[0xC^mask]) ^ S8(src[0xE^mask])
^ S7(src[0x8^mask]);
*((uint32_t*)(&dest[0x4])) = *((uint32_t*)(&src[0x8^mask]))
^ S5(dest[0x0]) ^ S6(dest[0x2])
^ S7(dest[0x1]) ^ S8(dest[0x3])
^ S8(src[0xA^mask]);
*((uint32_t*)(&dest[0x8])) = *((uint32_t*)(&src[0xC^mask]))
^ S5(dest[0x7]) ^ S6(dest[0x6])
^ S7(dest[0x5]) ^ S8(dest[0x4])
^ S5(src[0x9^mask]);
*((uint32_t*)(&dest[0xC])) = *((uint32_t*)(&src[0x4^mask]))
^ S5(dest[0xA])
^ S6(dest[0x9])
^ S7(dest[0xB])
^ S8(dest[0x8])
^ S6(src[0xB^mask]);
}
static
void cast5_init_M(uint8_t *dest, uint8_t *src, bool nmode, bool xmode){
uint8_t nmt[] = {0xB, 0xA, 0x9, 0x8,
0xF, 0xE, 0xD, 0xC,
0x3, 0x2, 0x1, 0x0,
0x7, 0x6, 0x5, 0x4}; /* nmode table */
uint8_t xmt[4][4] = {{0x2, 0x6, 0x9, 0xC},
{0x8, 0xD, 0x3, 0x7},
{0x3, 0x7, 0x8, 0xD},
{0x9, 0xC, 0x2, 0x6}};
#define NMT(x) (src[nmode?nmt[(x)]:(x)])
#define XMT(x) (src[xmt[(xmode<<1) + nmode][(x)]])
*((uint32_t*)(&dest[0x0])) = S5(NMT(0x8)) ^ S6(NMT(0x9)) ^ S7(NMT(0x7)) ^ S8(NMT(0x6)) ^ S5(XMT(0));
*((uint32_t*)(&dest[0x4])) = S5(NMT(0xA)) ^ S6(NMT(0xB)) ^ S7(NMT(0x5)) ^ S8(NMT(0x4)) ^ S6(XMT(1));
*((uint32_t*)(&dest[0x8])) = S5(NMT(0xC)) ^ S6(NMT(0xD)) ^ S7(NMT(0x3)) ^ S8(NMT(0x2)) ^ S7(XMT(2));
*((uint32_t*)(&dest[0xC])) = S5(NMT(0xE)) ^ S6(NMT(0xF)) ^ S7(NMT(0x1)) ^ S8(NMT(0x0)) ^ S8(XMT(3));
}
#define S5B(x) *(3+(uint8_t*)(&s5[(x)]))
#define S6B(x) *(3+(uint8_t*)(&s6[(x)]))
#define S7B(x) *(3+(uint8_t*)(&s7[(x)]))
#define S8B(x) *(3+(uint8_t*)(&s8[(x)]))
static
void cast5_init_rM(uint8_t *klo, uint8_t *khi, uint8_t offset, uint8_t *src, bool nmode, bool xmode){
uint8_t nmt[] = {0xB, 0xA, 0x9, 0x8, 0xF, 0xE, 0xD, 0xC, 0x3, 0x2, 0x1, 0x0, 0x7, 0x6, 0x5, 0x4}; /* nmode table */
uint8_t xmt[4][4] = {{0x2, 0x6, 0x9, 0xC}, {0x8, 0xD, 0x3, 0x7}, {0x3, 0x7, 0x8, 0xD}, {0x9, 0xC, 0x2, 0x6}};
uint8_t t, h=0;
t = S5B(NMT(0x8)) ^ S6B(NMT(0x9)) ^ S7B(NMT(0x7)) ^ S8B(NMT(0x6)) ^ S5B(XMT(0));
klo[offset*2] |= (t & 0x0f);
h |= (t&0x10); h>>=1;
t = S5B(NMT(0xA)) ^ S6B(NMT(0xB)) ^ S7B(NMT(0x5)) ^ S8B(NMT(0x4)) ^ S6B(XMT(1));
klo[offset*2] |= (t<<4) & 0xf0;
h |= t&0x10; h>>=1;
t = S5B(NMT(0xC)) ^ S6B(NMT(0xD)) ^ S7B(NMT(0x3)) ^ S8B(NMT(0x2)) ^ S7B(XMT(2));
klo[offset*2+1] |= t&0xf;
h |= t&0x10; h>>=1;
t = S5B(NMT(0xE)) ^ S6B(NMT(0xF)) ^ S7B(NMT(0x1)) ^ S8B(NMT(0x0)) ^ S8B(XMT(3));
klo[offset*2+1] |= t<<4;
h |= t&0x10; h >>=1;
#ifdef DEBUG
cli_putstr("\r\n\t h="); cli_hexdump(&h,1);
#endif
khi[offset>>1] |= h<<((offset&0x1)?4:0);
}
#define S_5X(s) (s5[BPX[(s)]])
#define S_6X(s) (s6[BPX[(s)]])
#define S_7X(s) (s7[BPX[(s)]])
#define S_8X(s) (s8[BPX[(s)]])
#define S_5Z(s) (s5[BPZ[(s)]])
#define S_6Z(s) (s6[BPZ[(s)]])
#define S_7Z(s) (s7[BPZ[(s)]])
#define S_8Z(s) (s8[BPZ[(s)]])
void cast5_init(const void* key, uint16_t keylength_b, cast5_ctx_t* s){
/* we migth return if the key is valid and if setup was successful */
uint32_t x[4], z[4];
#define BPX ((uint8_t*)&(x[0]))
#define BPZ ((uint8_t*)&(z[0]))
s->shortkey = (keylength_b<=80);
/* littel endian only! */
memset(&(x[0]), 0 ,16); /* set x to zero */
if(keylength_b > 128)
keylength_b=128;
memcpy(&(x[0]), key, (keylength_b+7)/8);
/* todo: merge a and b and compress the whole stuff */
/***** A *****/
cast5_init_A((uint8_t*)(&z[0]), (uint8_t*)(&x[0]), false);
/***** M *****/
cast5_init_M((uint8_t*)(&(s->mask[0])), (uint8_t*)(&z[0]), false, false);
/***** B *****/
cast5_init_A((uint8_t*)(&x[0]), (uint8_t*)(&z[0]), true);
/***** N *****/
cast5_init_M((uint8_t*)(&(s->mask[4])), (uint8_t*)(&x[0]), true, false);
/***** A *****/
cast5_init_A((uint8_t*)(&z[0]), (uint8_t*)(&x[0]), false);
/***** N' *****/
cast5_init_M((uint8_t*)(&(s->mask[8])), (uint8_t*)(&z[0]), true, true);
/***** B *****/
cast5_init_A((uint8_t*)(&x[0]), (uint8_t*)(&z[0]), true);
/***** M' *****/
cast5_init_M((uint8_t*)(&(s->mask[12])), (uint8_t*)(&x[0]), false, true);
/* that were the masking keys, now the rotation keys */
/* set the keys to zero */
memset(&(s->rotl[0]),0,8);
s->roth[0]=s->roth[1]=0;
/***** A *****/
cast5_init_A((uint8_t*)(&z[0]), (uint8_t*)(&x[0]), false);
/***** M *****/
cast5_init_rM(&(s->rotl[0]), &(s->roth[0]), 0, (uint8_t*)(&z[0]), false, false);
/***** B *****/
cast5_init_A((uint8_t*)(&x[0]), (uint8_t*)(&z[0]), true);
/***** N *****/
cast5_init_rM(&(s->rotl[0]), &(s->roth[0]), 1, (uint8_t*)(&x[0]), true, false);
/***** A *****/
cast5_init_A((uint8_t*)(&z[0]), (uint8_t*)(&x[0]), false);
/***** N' *****/
cast5_init_rM(&(s->rotl[0]), &(s->roth[0]), 2, (uint8_t*)(&z[0]), true, true);
/***** B *****/
cast5_init_A((uint8_t*)(&x[0]), (uint8_t*)(&z[0]), true);
/***** M' *****/
cast5_init_rM(&(s->rotl[0]), &(s->roth[0]), 3, (uint8_t*)(&x[0]), false, true);
/* done ;-) */
}
/********************************************************************************************************/
#define ROTL32(a,n) ((a)<<(n) | (a)>>(32-(n)))
#define CHANGE_ENDIAN32(x) ((x)<<24 | (x)>>24 | ((x)&0xff00)<<8 | ((x)&0xff0000)>>8 )
typedef uint32_t cast5_f_t(uint32_t,uint32_t,uint8_t);
#define IA 3
#define IB 2
#define IC 1
#define ID 0
static
uint32_t cast5_f1(uint32_t d, uint32_t m, uint8_t r){
uint32_t t;
t = ROTL32((d + m),r);
#ifdef DEBUG
uint32_t ia,ib,ic,id;
cli_putstr("\r\n f1("); cli_hexdump(&d, 4); cli_putc(',');
cli_hexdump(&m , 4); cli_putc(','); cli_hexdump(&r, 1);cli_putstr("): I=");
cli_hexdump(&t, 4);
ia = s1[((uint8_t*)&t)[IA]];
ib = s2[((uint8_t*)&t)[IB]];
ic = s3[((uint8_t*)&t)[IC]];
id = s4[((uint8_t*)&t)[ID]];
cli_putstr("\r\n\tIA="); cli_hexdump(&ia, 4);
cli_putstr("\r\n\tIB="); cli_hexdump(&ib, 4);
cli_putstr("\r\n\tIC="); cli_hexdump(&ic, 4);
cli_putstr("\r\n\tID="); cli_hexdump(&id, 4);
return (((ia ^ ib) - ic) + id);
#else
return ((( s1[((uint8_t*)&t)[IA]]
^ s2[((uint8_t*)&t)[IB]] )
- s3[((uint8_t*)&t)[IC]] )
+ s4[((uint8_t*)&t)[ID]] );
#endif
}
static
uint32_t cast5_f2(uint32_t d, uint32_t m, uint8_t r){
uint32_t t;
t = ROTL32((d ^ m),r);
#ifdef DEBUG
uint32_t ia,ib,ic,id;
cli_putstr("\r\n f2("); cli_hexdump(&d, 4); cli_putc(',');
cli_hexdump(&m , 4); cli_putc(','); cli_hexdump(&r, 1);cli_putstr("): I=");
cli_hexdump(&t, 4);
ia = s1[((uint8_t*)&t)[IA]];
ib = s2[((uint8_t*)&t)[IB]];
ic = s3[((uint8_t*)&t)[IC]];
id = s4[((uint8_t*)&t)[ID]];
cli_putstr("\r\n\tIA="); cli_hexdump(&ia, 4);
cli_putstr("\r\n\tIB="); cli_hexdump(&ib, 4);
cli_putstr("\r\n\tIC="); cli_hexdump(&ic, 4);
cli_putstr("\r\n\tID="); cli_hexdump(&id, 4);
return (((ia - ib) + ic) ^ id);
#else
return ((( s1[((uint8_t*)&t)[IA]]
- s2[((uint8_t*)&t)[IB]] )
+ s3[((uint8_t*)&t)[IC]] )
^ s4[((uint8_t*)&t)[ID]] );
#endif
}
static
uint32_t cast5_f3(uint32_t d, uint32_t m, uint8_t r){
uint32_t t;
t = ROTL32((m - d),r);
#ifdef DEBUG
uint32_t ia,ib,ic,id;
cli_putstr("\r\n f3("); cli_hexdump(&d, 4); cli_putc(',');
cli_hexdump(&m , 4); cli_putc(','); cli_hexdump(&r, 1);cli_putstr("): I=");
cli_hexdump(&t, 4);
ia = s1[((uint8_t*)&t)[IA]];
ib = s2[((uint8_t*)&t)[IB]];
ic = s3[((uint8_t*)&t)[IC]];
id = s4[((uint8_t*)&t)[ID]];
cli_putstr("\r\n\tIA="); cli_hexdump(&ia, 4);
cli_putstr("\r\n\tIB="); cli_hexdump(&ib, 4);
cli_putstr("\r\n\tIC="); cli_hexdump(&ic, 4);
cli_putstr("\r\n\tID="); cli_hexdump(&id, 4);
return (((ia + ib) ^ ic) - id);
#else
return (( s1[((uint8_t*)&t)[IA]]
+ s2[((uint8_t*)&t)[IB]])
^ s3[((uint8_t*)&t)[IC]])
- s4[((uint8_t*)&t)[ID]];
#endif
}
/******************************************************************************/
void cast5_enc(void* block, const cast5_ctx_t *s){
uint32_t l,r, x, y;
uint8_t i;
cast5_f_t* f[]={cast5_f1,cast5_f2,cast5_f3};
l=((uint32_t*)block)[0];
r=((uint32_t*)block)[1];
// cli_putstr("\r\n round[-1] = ");
// cli_hexdump(&r, 4);
for (i=0;i<(s->shortkey?12:16);++i){
x = r;
y = (f[i%3])(CHANGE_ENDIAN32(r), CHANGE_ENDIAN32(s->mask[i]),
(((s->roth[i>>3]) & (1<<(i&0x7)))?0x10:0x00)
+ ( ((s->rotl[i>>1])>>((i&1)?4:0)) & 0x0f) );
r = l ^ CHANGE_ENDIAN32(y);
// cli_putstr("\r\n round["); DEBUG_B(i); cli_putstr("] = ");
// cli_hexdump(&r, 4);
l = x;
}
((uint32_t*)block)[0]=r;
((uint32_t*)block)[1]=l;
}
/******************************************************************************/
void cast5_dec(void* block, const cast5_ctx_t *s){
uint32_t l,r, x, y;
int8_t i, rounds;
cast5_f_t* f[]={cast5_f1,cast5_f2,cast5_f3};
l=((uint32_t*)block)[0];
r=((uint32_t*)block)[1];
rounds = (s->shortkey?12:16);
for (i=rounds-1; i>=0 ;--i){
x = r;
y = (f[i%3])(CHANGE_ENDIAN32(r), CHANGE_ENDIAN32(s->mask[i]),
(((s->roth[i>>3]) & (1<<(i&0x7)))?0x10:0x00)
+ ( ((s->rotl[i>>1])>>((i&1)?4:0)) & 0x0f) );
r = l ^ CHANGE_ENDIAN32(y);
l = x;
}
((uint32_t*)block)[0]=r;
((uint32_t*)block)[1]=l;
}
/******************************************************************************/