avr-crypto-lib/jh/jh_simple_speed.c

225 lines
5.0 KiB
C
Raw Normal View History

2010-12-16 21:52:56 +00:00
/* jh_simple_speed.c */
/*
This file is part of the AVR-Crypto-Lib.
Copyright (C) 2006-2010 Daniel Otte (daniel.otte@rub.de)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <avr/pgmspace.h>
#include <stdlib.h>
#include <string.h>
#include "memxor.h"
#include "jh_simple.h"
#include "jh_tables.h"
#define DEBUG 0
#if DEBUG
#include "cli.h"
#endif
void jh_round(uint8_t* a, uint8_t roundno){
uint8_t b[128];
uint8_t i,r,u,v,x,y;
uint8_t *pr;
pr = jh_round_const + 32*roundno;
for(i=0; i<128; ++i){
if(i%4==0){
r = pgm_read_byte(pr++);
}
b[i]=pgm_read_byte(&(jh_lutbox[((r&0xC0)<<2)|a[i]]));
r<<=2;
}
for(i=0;i<128;++i){
u = pgm_read_byte(jh_permutation_table+2*i);
v = pgm_read_byte(jh_permutation_table+2*i+1);
x = b[u>>1];
y = b[v>>1];
if(u&1){
x <<= 4;
}else{
x &= 0xf0;
}
if(v&1){
y &= 0x0f;
}else{
y >>= 4;
}
a[i] = x|y;
}
}
uint8_t jh_l_inv(uint8_t a){
uint8_t v,w;
v = a>>4;
w = a&0xf;
v ^= ((w<<1)^(w>>3)^((w>>2)&2))&0xf;
w ^= ((v<<1)^(v>>3)^((v>>2)&2))&0xf;
return w|(v<<4);
}
void group(uint8_t *a){
uint8_t b[128];
uint8_t i,x,y;
for(i=0; i<128; ++i){
x = (((a[i/8+ 0])>>4)&0x8)
| (((a[i/8+ 32])>>5)&0x4)
| (((a[i/8+ 64])>>6)&0x2)
| (((a[i/8+ 96])>>7)&0x1);
a[i/8] <<= 1; a[i/8+32]<<=1; a[i/8+64]<<=1; a[i/8+96]<<=1;
y = (((a[i/8+ 16])>>4)&0x8)
| (((a[i/8+ 48])>>5)&0x4)
| (((a[i/8+ 80])>>6)&0x2)
| (((a[i/8+112])>>7)&0x1);
a[i/8+16] <<= 1; a[i/8+48]<<=1; a[i/8+80]<<=1; a[i/8+112]<<=1;
b[i]= (x<<4)|y;
}
memcpy(a,b,128);
}
void degroup(uint8_t *a){
uint8_t b[128];
uint8_t i,j;
for(i=0;i<128;++i){
j=i/8;
b[j+ 0]<<=1; b[j+ 0] |= ((a[i])>>7)&1;
b[j+ 32]<<=1; b[j+ 32] |= ((a[i])>>6)&1;
b[j+ 64]<<=1; b[j+ 64] |= ((a[i])>>5)&1;
b[j+ 96]<<=1; b[j+ 96] |= ((a[i])>>4)&1;
b[j+ 16]<<=1; b[j+ 16] |= ((a[i])>>3)&1;
b[j+ 48]<<=1; b[j+ 48] |= ((a[i])>>2)&1;
b[j+ 80]<<=1; b[j+ 80] |= ((a[i])>>1)&1;
b[j+112]<<=1; b[j+112] |= ((a[i])>>0)&1;
}
memcpy(a,b,128);
}
void jh_encrypt(uint8_t* a){
uint8_t i;
/* grouping */
#if DEBUG
cli_putstr_P(PSTR("\r\n== pre group ==\r\n"));
cli_hexdump_block(a, 128, 4, 16);
#endif
group(a);
for(i=0;i<35;++i){
jh_round(a, i);
}
uint8_t r;
uint8_t *pr;
pr = jh_round_const + 32*35;
for(i=0; i<128; ++i){
if(i%4==0){
r = pgm_read_byte(pr++);
}
a[i]=jh_l_inv(pgm_read_byte(&(jh_lutbox[((r&0xC0)<<2)|a[i]])));
r<<=2;
}
/* degrouping */
#if DEBUG
cli_putstr_P(PSTR("\r\n== pre degroup ==\r\n"));
cli_hexdump_block(a, 128, 4, 16);
#endif
degroup(a);
#if DEBUG
cli_putstr_P(PSTR("\r\n== post degroup ==\r\n"));
cli_hexdump_block(a, 128, 4, 16);
#endif
}
void jh_init(uint16_t hashlen_b, jh_ctx_t* ctx){
memset(ctx->a, 0, 128);
ctx->a[0] = hashlen_b>>8;
ctx->a[1] = hashlen_b&0xff;
jh_encrypt(ctx->a);
ctx->block_hashed=0;
}
void jh_nextBlock(jh_ctx_t* ctx, void* block){
memxor(ctx->a, block, 64);
jh_encrypt(ctx->a);
memxor(ctx->a+64, block, 64);
ctx->block_hashed++;
}
void jh_lastBlock(jh_ctx_t* ctx, void* block, uint16_t length_b){
while(length_b>=64*8){
jh_nextBlock(ctx, block);
block = (uint8_t*)block + 64;
length_b -= 64*8;
}
uint8_t buffer[64];
uint64_t total_length;
memset(buffer, 0, 64);
memcpy(buffer, block, (length_b+7)/8);
buffer[length_b/8] |= 0x80>>(length_b%8);
total_length=ctx->block_hashed*512+length_b;
if(length_b==0){
}else{
jh_nextBlock(ctx, buffer);
buffer[0]=0;
}
memset(buffer+1, 0, 64-8-1);
buffer[63] = total_length&0xff;
buffer[62] = (total_length>> 8)&0xff;
buffer[61] = (total_length>>16)&0xff;
buffer[60] = (total_length>>24)&0xff;
buffer[59] = (total_length>>32)&0xff;
buffer[58] = (total_length>>40)&0xff;
buffer[57] = (total_length>>48)&0xff;
buffer[56] = (total_length>>56)&0xff;
jh_nextBlock(ctx, buffer);
}
void jh_ctx2hash(void* dest, uint16_t length_b, jh_ctx_t* ctx){
memcpy(dest, ctx->a+128-(length_b+7)/8, (length_b+7)/8);
}
void jh224_init(jh_ctx_t* ctx){
jh_init(224, ctx);
}
void jh224_ctx2hash(void* dest, jh_ctx_t* ctx){
jh_ctx2hash(dest, 224, ctx);
}
void jh256_init(jh_ctx_t* ctx){
jh_init(256, ctx);
}
void jh256_ctx2hash(void* dest, jh_ctx_t* ctx){
jh_ctx2hash(dest, 256, ctx);
}
void jh384_init(jh_ctx_t* ctx){
jh_init(384, ctx);
}
void jh384_ctx2hash(void* dest, jh_ctx_t* ctx){
jh_ctx2hash(dest, 384, ctx);
}
void jh512_init(jh_ctx_t* ctx){
jh_init(512, ctx);
}
void jh512_ctx2hash(void* dest, jh_ctx_t* ctx){
jh_ctx2hash(dest, 512, ctx);
}