added rsa pkcs#1 v1.5 encryption

This commit is contained in:
bg 2012-04-03 19:20:45 +00:00
parent 38e12ca0d3
commit 06d9213f13
5 changed files with 1245 additions and 0 deletions

390
host/rsa_pkcs15_check.rb Normal file
View File

@ -0,0 +1,390 @@
#!/usr/bin/ruby
# rsa_pkcs15_check.rb
=begin
This file is part of the AVR-Crypto-Lib.
Copyright (C) 2008 Daniel Otte (daniel.otte@rub.de)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
=end
require 'rubygems'
require 'serialport'
require 'getopt/std'
$buffer_size = 0 # set automatically in init_system
$conffile_check = Hash.new
$conffile_check.default = 0
$debug = false
$logfile = nil
################################################################################
# readconfigfile #
################################################################################
def read_line_from_device()
repeat_counter = 10000
l = nil
s = ''
begin
l = $sp.gets()
repeat_counter -= 1
end while !l && repeat_counter > 0
t = Time.new
$logfile.printf("DBG: (%02d:%02d:%02d)<< %s\n", t.hour, t.min, t.sec, l.inspect) if $debug
if l && l.include?("AVR-Crypto-Lib")
$logfile.printf("DBG: system crashed !!!\n")
exit(false)
end
return l
end
def readconfigfile(fname, conf)
return conf if $conffile_check[fname]==1
$conffile_check[fname]=1
section = "default"
if not File.exists?(fname)
return conf
end
file = File.open(fname, "r")
until file.eof
line = file.gets()
next if /[\s]*#/.match(line)
if m=/\[[\s]*([^\s]*)[\s]*\]/.match(line)
section=m[1]
conf[m[1]] = Hash.new
next
end
next if ! /=/.match(line)
m=/[\s]*([^\s]*)[\s]*=[\s]*([^\s]*)/.match(line)
if m[1]=="include"
Dir.glob(m[2]){ |fn| conf = readconfigfile(fn, conf) }
else
conf[section][m[1]] = m[2]
end
end
file.close()
return conf
end
################################################################################
# reset_system #
################################################################################
def reset_system
$sp.print("\r")
sleep 0.1
$sp.print("\r")
sleep 0.1
$sp.print("echo off\r")
sleep 0.1
end
def read_block(f)
d = Array.new
begin
l = f.gets
x = l.split.collect { |e| e.to_i(16) }
d += x
end while x.length == 16
return d
end
=begin
# Modulus:
# Exponent:
# Modulus:
# Public exponent:
# Exponent:
# Prime 1:
# Prime 2:
# Prime exponent 1:
# Prime exponent 2:
# Coefficient:
# Message:
# Seed:
# Encryption:
=end
def get_next_block(f)
ret = Hash.new
data = Array.new
begin
l = f.gets
end while l && ! m= l.match(/^#[\s](.*):[\s]*$/)
return nil if ! l
ret['tag'] = m[1]
ret['line'] = f.lineno
data = read_block(f)
ret['data'] = data
return ret
end
$key_sequence = [
'Modulus', # 0
'Exponent', # 1
'Modulus', # 2
'Public exponent', # 3
'Exponent', # 4
'Prime 1', # 5
'Prime 2', # 6
'Prime exponent 1', # 7
'Prime exponent 2', # 8
'Coefficient', # 9
]
def key_consitency_check(k)
return true
end
def process_file(f, skip_key=1, skip_vec=1)
a = get_next_block(f)
key_no = 0
ok_counter = 0
fail_counter = 0
begin
if !a || ! a['tag'] == 'Modulus'
printf("ERROR: a = %s %d\n", a.inspect, __LINE__)
return
end
k_seq = Array.new
k_seq[0] = a
(1..($key_sequence.length-1)).each do |i|
a = get_next_block(f)
if ! a || a['tag'] != $key_sequence[i]
printf("ERROR: (expecting: %s) a = %s %d\n", $key_sequence[i], a.inspect, __LINE__)
end
k_seq[i] = a
end
key = convert_key(k_seq)
printf("ERROR: %d\n", __LINE__) if ! key
key_no += 1
vec_no = 0
printf("\n run %3d: ", key_no)
skip_key_flag = (key_no < skip_key)
load_key(key) if ! skip_key_flag
test_seq = Array.new
a = get_next_block(f)
printf("ERROR: %d\n", __LINE__) if ! a
begin
vec_no += 1
b = get_next_block(f)
c = get_next_block(f)
tv = Hash.new
tv['msg'] = a['data']
tv['seed'] = b['data']
tv['enc'] = c['data']
skip_vec_flag = (skip_key_flag || (key_no == skip_key && vec_no < skip_vec))
if skip_vec_flag
printf('o')
else
v = check_tv(tv)
if(v == true)
printf('*')
$logfile.printf("[[Test %2d.%02d = OK]]\n", key_no, vec_no)
ok_counter += 1
else
printf('%c', v ? '*' : '!')
$logfile.printf("[[Test %2d.%02d = FAIL]]\n", key_no, vec_no)
fail_counter += 1
end
end
a = get_next_block(f)
end while a && a['tag'] == 'Message'
end while a && a['tag'] = 'Modulus'
# printf("\nResult: %d OK / %d FAIL ==> %s \nFinished\n", ok_counter, fail_counter, fail_counter==0 ? ':-)' : ':-(')
return ok_counter,fail_counter
end
def convert_key(k_seq)
l = ['n', 'e', 'd', 'p', 'q', 'dP', 'dQ', 'qInv']
r = Hash.new
return nil if k_seq[0]['data'] != k_seq[2]['data']
return nil if k_seq[1]['data'] != k_seq[3]['data']
8.times do |i|
r[l[i]] = k_seq[2 + i]['data']
end
return r
end
def wait_for_dot
begin
s = $sp.gets()
end while !s || !s.include?('.')
end
def load_bigint(d)
$sp.printf("%d\r", d.length)
while l = read_line_from_device()
break if /data:/.match(l)
end
printf "ERROR: got no answer from system!" if !l
i = 0
d.each do |e|
$sp.printf("%02x", e)
i += 1
if i % 60 == 0
# we should now wait for incomming dot
wait_for_dot()
print('.')
end
end
end
def hexdump(a)
i = 0
a.each do |e|
printf("\n\t") if i % 16 == 0
printf('%02x ', e)
i += 1
end
puts('') if i % 16 != 1
end
def str_hexdump(a)
i = 0
s = ''
a.each do |e|
s += "\n\t" if i % 16 == 0
s += sprintf('%02x ', e)
i += 1
end
s += "\n" if i % 16 != 1
return s
end
def load_key(k)
$sp.print("load-key\r")
sleep 0.1
v = ['n', 'e', 'p', 'q', 'dP', 'dQ', 'qInv']
v.each do |e|
load_bigint(k[e])
$logfile.printf("DBG: loaded %s\n", e) if $debug
end
while l = read_line_from_device()
break if />/.match(l)
end
end
def strip_leading_zeros(a)
loop do
return [] if a.length == 0
return a if a[0] != 0
a.delete_at(0)
end
end
def check_tv(tv)
sleep 0.1
$sp.print("seed-test\r")
sleep 0.1
load_bigint(tv['msg'])
$logfile.printf("DBG: loaded %s\n", 'msg') if $debug
sleep 0.1
tv['seed'].each { |e| $sp.printf(" %02x", e) }
while l = read_line_from_device()
break if /ciphertext:/.match(l)
end
test_enc = ''
loop do
l = read_line_from_device()
break if ! /([0-9A-Fa-f]{2}\s*)+/.match(l)
test_enc += l if l
end
test_enc_a = Array.new
test_enc = test_enc.split(/[\W\r\n]+/)
test_enc.each do |e|
v = e.sub(/[^0-9A-Fa-f]/, '')
test_enc_a << v if v.length == 2
end
test_enc_a.collect!{ |e| e.to_i(16) }
strip_leading_zeros(test_enc_a)
strip_leading_zeros(tv['enc'])
enc_ok = (test_enc_a == tv['enc'])
if !enc_ok
$logfile.printf("DBG: ref = %s test = %s\n", str_hexdump(tv['enc']) , str_hexdump(test_enc_a))
end
m = nil
loop do
l = read_line_from_device()
m = /(>>OK<<|ERROR)/.match(l)
break if m
end
return true if enc_ok && (m[1] == '>>OK<<')
return false
end
########################################
# MAIN
########################################
opts = Getopt::Std.getopts('dc:f:il:s:')
conf = Hash.new
conf = readconfigfile("/etc/testport.conf", conf)
conf = readconfigfile("~/.testport.conf", conf)
conf = readconfigfile("testport.conf", conf)
conf = readconfigfile(opts["c"], conf) if opts["c"]
#puts conf.inspect
puts("serial port interface version: " + SerialPort::VERSION);
$linewidth = 64
params = { "baud" => conf["PORT"]["baud"].to_i,
"data_bits" => conf["PORT"]["databits"].to_i,
"stop_bits" => conf["PORT"]["stopbits"].to_i,
"parity" => SerialPort::NONE }
params["paraty"] = SerialPort::ODD if conf["PORT"]["paraty"].downcase == "odd"
params["paraty"] = SerialPort::EVEN if conf["PORT"]["paraty"].downcase == "even"
params["paraty"] = SerialPort::MARK if conf["PORT"]["paraty"].downcase == "mark"
params["paraty"] = SerialPort::SPACE if conf["PORT"]["paraty"].downcase == "space"
puts("\nPort: "+conf["PORT"]["port"]+"@" +
params["baud"].to_s +
" " +
params["data_bits"].to_s +
conf["PORT"]["paraty"][0,1].upcase +
params["stop_bits"].to_s +
"\n")
$sp = SerialPort.new(conf["PORT"]["port"], params)
$sp.read_timeout=1000; # 5 minutes
$sp.flow_control = SerialPort::SOFT
$debug = true if opts['d']
if opts['l']
$logfile = File.open(opts['l'], 'w')
end
$logfile = STDOUT if ! $logfile
reset_system()
if opts['s'] && m = opts['s'].match(/([\d]+\.([\d]+))/)
sk = m[1].to_i
sv = m[2].to_i
else
sk = 1
sv = 1
end
f = File.open(opts['f'], "r")
exit if !f
ok,fail = process_file(f,sk,sv)
printf("\nOK: %d FAIL: %d :-%s\n",ok,fail, fail==0 ? ')':'(')

14
mkfiles/rsa_pkcs15.mk Normal file
View File

@ -0,0 +1,14 @@
# Makefile for RSA
ALGO_NAME := RSA_PKCS15
# comment out the following line for removement of RSA from the build process
SIGNATURE += $(ALGO_NAME)
$(ALGO_NAME)_DIR := rsa/
$(ALGO_NAME)_INCDIR := memxor/ bigint/ noekeon/
$(ALGO_NAME)_OBJ := bigint.o bigint_io.o rsa_basic.o rsa_pkcs15.o
$(ALGO_NAME)_TESTBIN := main-rsa_pkcs15-test.o $(CLI_STD) random_dummy.o \
noekeon.o noekeon_prng.o memxor.o
$(ALGO_NAME)_PERFORMANCE_TEST := performance

134
rsa/rsa_pkcs15.c Normal file
View File

@ -0,0 +1,134 @@
/* rsa_pkcs15.c */
/*
This file is part of the ARM-Crypto-Lib.
Copyright (C) 2006-2011 Daniel Otte (daniel.otte@rub.de)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "bigint.h"
#include "rsa_basic.h"
#define DEBUG 0
#if DEBUG
#include "bigint_io.h"
#include "cli.h"
#endif
#include "random_dummy.h"
uint16_t rsa_pkcs15_compute_padlength_B(bigint_t* modulus, uint16_t msg_length_B){
return bigint_get_first_set_bit(modulus) / 8 + 1 - msg_length_B - 3;
}
uint8_t rsa_encrypt_pkcs15(void* dest, uint16_t* out_length, const void* src,
uint16_t length_B, rsa_publickey_t* key, const void* pad){
int16_t pad_length;
bigint_t x;
pad_length = rsa_pkcs15_compute_padlength_B(key->modulus, length_B);
if(pad_length<8){
#if DEBUG
cli_putstr_P(PSTR("\r\nERROR: pad_length<8; pad_length: "));
cli_hexdump_rev(&pad_length, 2);
#endif
return 2; /* message to long */
}
if(!pad){
#if DEBUG
cli_putstr_P(PSTR("\r\nauto-generating pad ..."));
#endif
uint16_t i;
uint8_t c;
for(i=0; i<pad_length; ++i){
do{
c = prng_get_byte();
}while(c==0);
((uint8_t*)dest)[i+2] = c;
}
}else{
#if DEBUG
cli_putstr_P(PSTR("\r\nsupplied pad: "));
cli_hexdump_block(pad, pad_length, 4, 16);
#endif
memcpy((uint8_t*)dest + 2, pad, pad_length);
}
((uint8_t*)dest)[0] = 0x00;
((uint8_t*)dest)[1] = 0x02;
((uint8_t*)dest)[2+pad_length] = 0x00;
memcpy((uint8_t*)dest+3+pad_length, src, length_B);
x.wordv = dest;
x.length_B = (length_B+pad_length+3+sizeof(bigint_word_t)-1)/sizeof(bigint_word_t);
#if DEBUG
cli_putstr_P(PSTR("\r\nx-data: "));
cli_hexdump_block(x.wordv, x.length_B * sizeof(bigint_word_t), 4, 16);
#endif
bigint_adjust(&x);
rsa_os2ip(&x, NULL, length_B+pad_length+3);
rsa_enc(&x, key);
rsa_i2osp(NULL, &x, out_length);
return 0;
}
uint8_t rsa_decrypt_pkcs15(void* dest, uint16_t* out_length, const void* src,
uint16_t length_B, rsa_privatekey_t* key, void* pad){
bigint_t x;
uint16_t m_length, pad_length=0, idx=0;
x.wordv = dest;
rsa_os2ip(&x, src, length_B);
#if DEBUG
cli_putstr_P(PSTR("\r\ncalling rsa_dec() ..."));
#endif
rsa_dec(&x, key);
#if DEBUG
cli_putstr_P(PSTR("\r\nfinished rsa_dec() ..."));
#endif
rsa_i2osp(NULL, &x, &m_length);
#if DEBUG
cli_putstr_P(PSTR("\r\ndecoded block:"));
cli_hexdump_block(x.wordv, m_length, 4, 16);
#endif
while(((uint8_t*)x.wordv)[idx]==0 && idx<m_length){
++idx;
}
if(((uint8_t*)x.wordv)[idx]!=2 || idx>=m_length){
return 1;
}
++idx;
while(((uint8_t*)x.wordv)[idx+pad_length]!=0 && (idx+pad_length)<m_length){
++pad_length;
}
if(pad_length<8 || (idx+pad_length)>=m_length){
return 2;
}
*out_length = m_length - idx - pad_length - 1;
if(pad){
#if DEBUG
cli_putstr_P(PSTR("\r\npadding block:"));
cli_hexdump_block(((uint8_t*)x.wordv)+idx, pad_length, 4, 16);
cli_putstr_P(PSTR("\r\npad @ 0x"));
cli_hexdump_rev(&pad, 2);
cli_putstr_P(PSTR("\r\ndst @ 0x"));
cli_hexdump_rev(&dest, 2);
#endif
memcpy(pad, ((uint8_t*)x.wordv)+idx, pad_length);
}
memmove(dest, ((uint8_t*)x.wordv) + idx + pad_length + 1, m_length - idx - pad_length - 1);
return 0;
}

35
rsa/rsa_pkcs15.h Normal file
View File

@ -0,0 +1,35 @@
/* rsa_pkcs15.h */
/*
This file is part of the AVR-Crypto-Lib.
Copyright (C) 2011 Daniel Otte (daniel.otte@rub.de)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef RSA_PKCS15_H_
#define RSA_PKCS15_H_
#include <stdint.h>
#include "bigint.h"
uint16_t rsa_pkcs15_compute_padlength_B(bigint_t* modulus, uint16_t msg_length_B);
uint8_t rsa_encrypt_pkcs15(void* dest, uint16_t* out_length, const void* src,
uint16_t length_B, rsa_publickey_t* key, const void* pad);
uint8_t rsa_decrypt_pkcs15(void* dest, uint16_t* out_length, const void* src,
uint16_t length_B, rsa_privatekey_t* key, void* pad);
#endif /* RSA_PKCS15_H_ */

View File

@ -0,0 +1,672 @@
/* main-dsa-test.c */
/*
This file is part of the ARM-Crypto-Lib.
Copyright (C) 2010 Daniel Otte (daniel.otte@rub.de)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* RSA test-suit
*
*/
#include "main-test-common.h"
#include "noekeon.h"
#include "noekeon_prng.h"
#include "bigint.h"
#include "bigint_io.h"
#include "random_dummy.h"
#include "rsa_basic.h"
#include "rsa_pkcs15.h"
#include "performance_test.h"
const char* algo_name = "RSA-PKCS15";
#define BIGINT_CEIL(x) ((((x) + sizeof(bigint_word_t) - 1) / sizeof(bigint_word_t)) * sizeof(bigint_word_t))
#define BIGINT_OFF(x) ((sizeof(bigint_word_t) - (x) % sizeof(bigint_word_t)) % sizeof(bigint_word_t))
/*****************************************************************************
* additional validation-functions *
*****************************************************************************/
/* Modulus: */
const uint8_t modulus[] PROGMEM = {
0xa8, 0xb3, 0xb2, 0x84, 0xaf, 0x8e, 0xb5, 0x0b, 0x38, 0x70, 0x34, 0xa8, 0x60, 0xf1, 0x46, 0xc4,
0x91, 0x9f, 0x31, 0x87, 0x63, 0xcd, 0x6c, 0x55, 0x98, 0xc8, 0xae, 0x48, 0x11, 0xa1, 0xe0, 0xab,
0xc4, 0xc7, 0xe0, 0xb0, 0x82, 0xd6, 0x93, 0xa5, 0xe7, 0xfc, 0xed, 0x67, 0x5c, 0xf4, 0x66, 0x85,
0x12, 0x77, 0x2c, 0x0c, 0xbc, 0x64, 0xa7, 0x42, 0xc6, 0xc6, 0x30, 0xf5, 0x33, 0xc8, 0xcc, 0x72,
0xf6, 0x2a, 0xe8, 0x33, 0xc4, 0x0b, 0xf2, 0x58, 0x42, 0xe9, 0x84, 0xbb, 0x78, 0xbd, 0xbf, 0x97,
0xc0, 0x10, 0x7d, 0x55, 0xbd, 0xb6, 0x62, 0xf5, 0xc4, 0xe0, 0xfa, 0xb9, 0x84, 0x5c, 0xb5, 0x14,
0x8e, 0xf7, 0x39, 0x2d, 0xd3, 0xaa, 0xff, 0x93, 0xae, 0x1e, 0x6b, 0x66, 0x7b, 0xb3, 0xd4, 0x24,
0x76, 0x16, 0xd4, 0xf5, 0xba, 0x10, 0xd4, 0xcf, 0xd2, 0x26, 0xde, 0x88, 0xd3, 0x9f, 0x16, 0xfb
};
/* Public exponent: */
const uint8_t pub_exponent[] PROGMEM = { 0x01, 0x00, 0x01 };
/* Exponent: */
const uint8_t priv_exponent[] PROGMEM = {
0x53, 0x33, 0x9c, 0xfd, 0xb7, 0x9f, 0xc8, 0x46, 0x6a, 0x65, 0x5c, 0x73, 0x16, 0xac, 0xa8, 0x5c,
0x55, 0xfd, 0x8f, 0x6d, 0xd8, 0x98, 0xfd, 0xaf, 0x11, 0x95, 0x17, 0xef, 0x4f, 0x52, 0xe8, 0xfd,
0x8e, 0x25, 0x8d, 0xf9, 0x3f, 0xee, 0x18, 0x0f, 0xa0, 0xe4, 0xab, 0x29, 0x69, 0x3c, 0xd8, 0x3b,
0x15, 0x2a, 0x55, 0x3d, 0x4a, 0xc4, 0xd1, 0x81, 0x2b, 0x8b, 0x9f, 0xa5, 0xaf, 0x0e, 0x7f, 0x55,
0xfe, 0x73, 0x04, 0xdf, 0x41, 0x57, 0x09, 0x26, 0xf3, 0x31, 0x1f, 0x15, 0xc4, 0xd6, 0x5a, 0x73,
0x2c, 0x48, 0x31, 0x16, 0xee, 0x3d, 0x3d, 0x2d, 0x0a, 0xf3, 0x54, 0x9a, 0xd9, 0xbf, 0x7c, 0xbf,
0xb7, 0x8a, 0xd8, 0x84, 0xf8, 0x4d, 0x5b, 0xeb, 0x04, 0x72, 0x4d, 0xc7, 0x36, 0x9b, 0x31, 0xde,
0xf3, 0x7d, 0x0c, 0xf5, 0x39, 0xe9, 0xcf, 0xcd, 0xd3, 0xde, 0x65, 0x37, 0x29, 0xea, 0xd5, 0xd1
};
/* Prime 1: */
const uint8_t p[] PROGMEM = {
0xd3, 0x27, 0x37, 0xe7, 0x26, 0x7f, 0xfe, 0x13, 0x41, 0xb2, 0xd5, 0xc0, 0xd1, 0x50, 0xa8, 0x1b,
0x58, 0x6f, 0xb3, 0x13, 0x2b, 0xed, 0x2f, 0x8d, 0x52, 0x62, 0x86, 0x4a, 0x9c, 0xb9, 0xf3, 0x0a,
0xf3, 0x8b, 0xe4, 0x48, 0x59, 0x8d, 0x41, 0x3a, 0x17, 0x2e, 0xfb, 0x80, 0x2c, 0x21, 0xac, 0xf1,
0xc1, 0x1c, 0x52, 0x0c, 0x2f, 0x26, 0xa4, 0x71, 0xdc, 0xad, 0x21, 0x2e, 0xac, 0x7c, 0xa3, 0x9d
};
/* Prime 2: */
const uint8_t q[] PROGMEM = {
0xcc, 0x88, 0x53, 0xd1, 0xd5, 0x4d, 0xa6, 0x30, 0xfa, 0xc0, 0x04, 0xf4, 0x71, 0xf2, 0x81, 0xc7,
0xb8, 0x98, 0x2d, 0x82, 0x24, 0xa4, 0x90, 0xed, 0xbe, 0xb3, 0x3d, 0x3e, 0x3d, 0x5c, 0xc9, 0x3c,
0x47, 0x65, 0x70, 0x3d, 0x1d, 0xd7, 0x91, 0x64, 0x2f, 0x1f, 0x11, 0x6a, 0x0d, 0xd8, 0x52, 0xbe,
0x24, 0x19, 0xb2, 0xaf, 0x72, 0xbf, 0xe9, 0xa0, 0x30, 0xe8, 0x60, 0xb0, 0x28, 0x8b, 0x5d, 0x77
};
/* Prime exponent 1: */
const uint8_t dp[] PROGMEM = {
0x0e, 0x12, 0xbf, 0x17, 0x18, 0xe9, 0xce, 0xf5, 0x59, 0x9b, 0xa1, 0xc3, 0x88, 0x2f, 0xe8, 0x04,
0x6a, 0x90, 0x87, 0x4e, 0xef, 0xce, 0x8f, 0x2c, 0xcc, 0x20, 0xe4, 0xf2, 0x74, 0x1f, 0xb0, 0xa3,
0x3a, 0x38, 0x48, 0xae, 0xc9, 0xc9, 0x30, 0x5f, 0xbe, 0xcb, 0xd2, 0xd7, 0x68, 0x19, 0x96, 0x7d,
0x46, 0x71, 0xac, 0xc6, 0x43, 0x1e, 0x40, 0x37, 0x96, 0x8d, 0xb3, 0x78, 0x78, 0xe6, 0x95, 0xc1
};
/* Prime exponent 2: */
const uint8_t dq[] PROGMEM = {
0x95, 0x29, 0x7b, 0x0f, 0x95, 0xa2, 0xfa, 0x67, 0xd0, 0x07, 0x07, 0xd6, 0x09, 0xdf, 0xd4, 0xfc,
0x05, 0xc8, 0x9d, 0xaf, 0xc2, 0xef, 0x6d, 0x6e, 0xa5, 0x5b, 0xec, 0x77, 0x1e, 0xa3, 0x33, 0x73,
0x4d, 0x92, 0x51, 0xe7, 0x90, 0x82, 0xec, 0xda, 0x86, 0x6e, 0xfe, 0xf1, 0x3c, 0x45, 0x9e, 0x1a,
0x63, 0x13, 0x86, 0xb7, 0xe3, 0x54, 0xc8, 0x99, 0xf5, 0xf1, 0x12, 0xca, 0x85, 0xd7, 0x15, 0x83
};
/* Coefficient: */
const uint8_t qinv[] PROGMEM = {
0x4f, 0x45, 0x6c, 0x50, 0x24, 0x93, 0xbd, 0xc0, 0xed, 0x2a, 0xb7, 0x56, 0xa3, 0xa6, 0xed, 0x4d,
0x67, 0x35, 0x2a, 0x69, 0x7d, 0x42, 0x16, 0xe9, 0x32, 0x12, 0xb1, 0x27, 0xa6, 0x3d, 0x54, 0x11,
0xce, 0x6f, 0xa9, 0x8d, 0x5d, 0xbe, 0xfd, 0x73, 0x26, 0x3e, 0x37, 0x28, 0x14, 0x27, 0x43, 0x81,
0x81, 0x66, 0xed, 0x7d, 0xd6, 0x36, 0x87, 0xdd, 0x2a, 0x8c, 0xa1, 0xd2, 0xf4, 0xfb, 0xd8, 0xe1
};
/* PKCS#1 v1.5 encryption of 0x20, random messages with random s0xee,ds
* ---------------------------------------------------------------------------
*/
/* Message: */
const uint8_t message_x[] PROGMEM = {
0x66, 0x28, 0x19, 0x4e, 0x12, 0x07, 0x3d, 0xb0, 0x3b, 0xa9, 0x4c, 0xda, 0x9e, 0xf9, 0x53, 0x23,
0x97, 0xd5, 0x0d, 0xba, 0x79, 0xb9, 0x87, 0x00, 0x4a, 0xfe, 0xfe, 0x34
};
/* Seed: */
const uint8_t seed_x[] PROGMEM = {
0x01, 0x73, 0x41, 0xae, 0x38, 0x75, 0xd5, 0xf8, 0x71, 0x01, 0xf8, 0xcc, 0x4f, 0xa9, 0xb9, 0xbc,
0x15, 0x6b, 0xb0, 0x46, 0x28, 0xfc, 0xcd, 0xb2, 0xf4, 0xf1, 0x1e, 0x90, 0x5b, 0xd3, 0xa1, 0x55,
0xd3, 0x76, 0xf5, 0x93, 0xbd, 0x73, 0x04, 0x21, 0x08, 0x74, 0xeb, 0xa0, 0x8a, 0x5e, 0x22, 0xbc,
0xcc, 0xb4, 0xc9, 0xd3, 0x88, 0x2a, 0x93, 0xa5, 0x4d, 0xb0, 0x22, 0xf5, 0x03, 0xd1, 0x63, 0x38,
0xb6, 0xb7, 0xce, 0x16, 0xdc, 0x7f, 0x4b, 0xbf, 0x9a, 0x96, 0xb5, 0x97, 0x72, 0xd6, 0x60, 0x6e,
0x97, 0x47, 0xc7, 0x64, 0x9b, 0xf9, 0xe0, 0x83, 0xdb, 0x98, 0x18, 0x84, 0xa9, 0x54, 0xab, 0x3c,
0x6f };
/* Encryption: */
const uint8_t encrypted_x[] PROGMEM = {
0x50, 0xb4, 0xc1, 0x41, 0x36, 0xbd, 0x19, 0x8c, 0x2f, 0x3c, 0x3e, 0xd2, 0x43, 0xfc, 0xe0, 0x36,
0xe1, 0x68, 0xd5, 0x65, 0x17, 0x98, 0x4a, 0x26, 0x3c, 0xd6, 0x64, 0x92, 0xb8, 0x08, 0x04, 0xf1,
0x69, 0xd2, 0x10, 0xf2, 0xb9, 0xbd, 0xfb, 0x48, 0xb1, 0x2f, 0x9e, 0xa0, 0x50, 0x09, 0xc7, 0x7d,
0xa2, 0x57, 0xcc, 0x60, 0x0c, 0xce, 0xfe, 0x3a, 0x62, 0x83, 0x78, 0x9d, 0x8e, 0xa0, 0xe6, 0x07,
0xac, 0x58, 0xe2, 0x69, 0x0e, 0xc4, 0xeb, 0xc1, 0x01, 0x46, 0xe8, 0xcb, 0xaa, 0x5e, 0xd4, 0xd5,
0xcc, 0xe6, 0xfe, 0x7b, 0x0f, 0xf9, 0xef, 0xc1, 0xea, 0xbb, 0x56, 0x4d, 0xbf, 0x49, 0x82, 0x85,
0xf4, 0x49, 0xee, 0x61, 0xdd, 0x7b, 0x42, 0xee, 0x5b, 0x58, 0x92, 0xcb, 0x90, 0x60, 0x1f, 0x30,
0xcd, 0xa0, 0x7b, 0xf2, 0x64, 0x89, 0x31, 0x0b, 0xcd, 0x23, 0xb5, 0x28, 0xce, 0xab, 0x3c, 0x31
};
uint8_t keys_allocated = 0;
rsa_publickey_t pub_key;
rsa_privatekey_t priv_key;
#if 1
#define MSG message_x
#define SEED seed_x
#define ENCRYPTED encrypted_x
#define MODULUS modulus
#define PUB_EXPONENT pub_exponent
#define PRIV_EXPONENT priv_exponent
#define P p
#define Q q
#define DP dp
#define DQ dq
#define QINV qinv
#endif
uint8_t convert_nibble(uint8_t c){
if(c>='0' && c<='9'){
return c - '0';
}
c |= 'A' ^ 'a';
if(c>='a' && c<='f'){
return c - 'a' + 10;
}
return 0xff;
}
const char *block_ignore_string=" \t\r\n,;";
#define BUFFER_LIMIT 120
uint16_t read_os(void* dst, uint16_t length, const char* ignore_string){
uint16_t counter = 0;
uint16_t c;
uint8_t v, tmp = 0, idx = 0;
if(!ignore_string){
ignore_string = block_ignore_string;
}
while(counter < length){
c = cli_getc();
if(c > 0xff){
return counter;
}
if(strchr(ignore_string, c)){
continue;
}
v = convert_nibble(c);
if(v > 0x0f){
return counter;
}
if(idx){
((uint8_t*)dst)[counter++] = (tmp << 4) | v;
idx = 0;
if(counter % (BUFFER_LIMIT/2) == 0){
cli_putc('.');
}
}else{
tmp = v;
idx = 1;
}
}
return counter;
}
uint16_t own_atou(const char* str){
uint16_t r=0;
while(*str && *str >= '0' && *str <= '9'){
r *= 10;
r += *str++ - '0';
}
return r;
}
uint8_t read_bigint(bigint_t* a, char* prompt){
uint16_t read_length, actual_length;
uint8_t off;
uint8_t *buffer;
char read_int_str[18];
cli_putstr(prompt);
cli_putstr_P(PSTR("\r\n length: "));
cli_getsn(read_int_str, 16);
read_length = own_atou(read_int_str);
off = (sizeof(bigint_word_t) - (read_length % sizeof(bigint_word_t))) % sizeof(bigint_word_t);
buffer = malloc(((read_length + sizeof(bigint_word_t) - 1) / sizeof(bigint_word_t)) * sizeof(bigint_word_t));
if(!buffer){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 2;
}
cli_putstr_P(PSTR("\r\n data: "));
memset(buffer, 0, sizeof(bigint_word_t));
actual_length = read_os(buffer + off, read_length, NULL);
if(actual_length != read_length){
cli_putstr_P(PSTR("\r\nERROR: unexpected end of data!"));
free(buffer);
return 1;
}
a->wordv = (bigint_word_t*)buffer;
a->length_B = (read_length + sizeof(bigint_word_t) - 1) / sizeof(bigint_word_t);
bigint_changeendianess(a);
bigint_adjust(a);
return 0;
}
uint8_t pre_alloc_key_crt(void){
uint8_t c;
pub_key.modulus = malloc(sizeof(bigint_t));
if(!pub_key.modulus){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 2;
}
priv_key.modulus = pub_key.modulus;
priv_key.n = 5;
priv_key.components = malloc(5 * sizeof(bigint_t*));
if(!priv_key.components){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 2;
}
pub_key.exponent = malloc(sizeof(bigint_t));
if(!pub_key.exponent){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 2;
}
for(c=0; c<5; ++c){
priv_key.components[c] = malloc(sizeof(bigint_t));
if(!priv_key.components[c]){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 2;
}
}
return 0;
}
void free_key(void){
uint8_t c;
free(pub_key.modulus->wordv);
free(pub_key.exponent->wordv);
free(pub_key.modulus);
pub_key.modulus = priv_key.modulus = NULL;
free(pub_key.exponent);
pub_key.exponent = NULL;
for(c = 0; c < priv_key.n; ++c){
free(priv_key.components[c]->wordv);
free(priv_key.components[c]);
}
free(priv_key.components);
priv_key.components = NULL;
}
uint8_t read_key_crt(void){
uint8_t r;
cli_putstr_P(PSTR("\r\n== reading key (crt) =="));
r = pre_alloc_key_crt();
if(r) return r;
r = read_bigint(pub_key.modulus,"\r\n = module =");
if(r) return r;
r = read_bigint(pub_key.exponent,"\r\n = public exponent =");
if(r) return r;
r = read_bigint(priv_key.components[0],"\r\n = p (first prime) =");
if(r) return r;
r = read_bigint(priv_key.components[1],"\r\n = q (second prime) =");
if(r) return r;
r = read_bigint(priv_key.components[2],"\r\n = dp (p's exponent) =");
if(r) return r;
r = read_bigint(priv_key.components[3],"\r\n = dq (q's exponent) =");
if(r) return r;
r = read_bigint(priv_key.components[4],"\r\n = qInv (q' coefficient) =");
/*
cli_putstr_P(PSTR("\r\nmodulus:"));
bigint_print_hex(pub_key.modulus);
cli_putstr_P(PSTR("\r\npublic exponent:"));
bigint_print_hex(pub_key.exponent);
cli_putstr_P(PSTR("\r\np:"));
bigint_print_hex(priv_key.components[0]);
cli_putstr_P(PSTR("\r\nq:"));
bigint_print_hex(priv_key.components[1]);
cli_putstr_P(PSTR("\r\ndP:"));
bigint_print_hex(priv_key.components[2]);
cli_putstr_P(PSTR("\r\ndQ:"));
bigint_print_hex(priv_key.components[3]);
cli_putstr_P(PSTR("\r\nqInv:"));
bigint_print_hex(priv_key.components[4]);
*/
return r;
}
uint8_t read_key_conv(void){
uint8_t r;
cli_putstr_P(PSTR("\r\n== reading key (crt) =="));
pub_key.modulus = malloc(sizeof(bigint_t));
if(!pub_key.modulus){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 2;
}
r = read_bigint(pub_key.modulus,"\r\n = module =");
if(r) return r;
priv_key.modulus = pub_key.modulus;
priv_key.n = 1;
pub_key.exponent = malloc(sizeof(bigint_t));
if(!pub_key.exponent){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 2;
}
priv_key.components = malloc(sizeof(bigint_t*));
if(!priv_key.components){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 2;
}
priv_key.components[0] = malloc(sizeof(bigint_t));
if(!priv_key.components[0]){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 2;
}
r = read_bigint(pub_key.exponent,"\r\n = public exponent =");
if(r) return r;
r = read_bigint(priv_key.components[0],"\r\n = private exponent =");
return r;
}
void load_priv_conventional(void){
bigint_t *epriv;
epriv = malloc(sizeof(bigint_t));
if(!epriv){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
epriv->length_B = (sizeof(PRIV_EXPONENT) + sizeof(bigint_word_t) - 1) / sizeof(bigint_word_t);
epriv->wordv = malloc(epriv->length_B * sizeof(bigint_word_t));
if(!epriv->wordv){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
memcpy(epriv->wordv, PRIV_EXPONENT, sizeof(PRIV_EXPONENT));
priv_key.components = malloc(sizeof(bigint_t*));
priv_key.components[0] = epriv;
priv_key.n = 1;
bigint_changeendianess(epriv);
bigint_adjust(epriv);
}
void load_priv_crt_mono(void){
bigint_t **v;
const uint8_t *bv[5] = {P,Q,DP,DQ,QINV};
uint16_t sv[5] = {sizeof(P), sizeof(Q), sizeof(DP), sizeof(DQ), sizeof(QINV)};
uint8_t i;
v = malloc(5 * sizeof(bigint_t));
if(!v){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
priv_key.components = malloc(5*sizeof(bigint_t*));
if(!priv_key.components){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
priv_key.n = 5;
for(i=0; i<5; ++i){
v[i] = malloc(sizeof(bigint_t));
v[i]->info = 0;
v[i]->length_B = (sv[i] + sizeof(bigint_word_t) - 1) / sizeof(bigint_word_t);
v[i]->wordv = calloc(v[i]->length_B , sizeof(bigint_word_t));
if(!v[i]->wordv){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
memcpy(v[i]->wordv, bv[i], sv[i]);
bigint_changeendianess(v[i]);
bigint_adjust(v[i]);
priv_key.components[i] = v[i];
}
}
uint8_t load_bigint_from_os(bigint_t* a, PGM_VOID_P os, uint16_t length_B){
a->length_B = BIGINT_CEIL(length_B) / sizeof(bigint_word_t);
a->wordv = malloc(BIGINT_CEIL(length_B));
if(!a->wordv){
cli_putstr_P(PSTR("\r\nOOM!\r\n"));
return 1;
}
memset(a->wordv, 0, sizeof(bigint_word_t));
memcpy_P((uint8_t*)a->wordv + BIGINT_OFF(length_B), os, length_B);
a->info = 0;
bigint_changeendianess(a);
bigint_adjust(a);
return 0;
}
void load_fix_rsa(void){
if(keys_allocated){
free_key();
}
keys_allocated = 1;
if(pre_alloc_key_crt()){
cli_putstr_P(PSTR("\r\nOOM!\r\n"));
return;
}
load_bigint_from_os(pub_key.modulus, MODULUS, sizeof(MODULUS));
load_bigint_from_os(pub_key.exponent, PUB_EXPONENT, sizeof(PUB_EXPONENT));
priv_key.n = 5;
load_bigint_from_os(priv_key.components[0], P, sizeof(P));
load_bigint_from_os(priv_key.components[1], Q, sizeof(Q));
load_bigint_from_os(priv_key.components[2], DP, sizeof(DP));
load_bigint_from_os(priv_key.components[3], DQ, sizeof(DQ));
load_bigint_from_os(priv_key.components[4], QINV, sizeof(QINV));
// load_priv_conventional();
// load_priv_crt_mono();
}
void quick_test(void){
uint8_t *ciphertext, *plaintext, rc;
uint8_t seed[sizeof(SEED)], seed_out[sizeof(SEED)];
uint16_t clen, plen;
if(!keys_allocated){
load_fix_rsa();
}
ciphertext = malloc(clen = pub_key.modulus->length_B * sizeof(bigint_word_t));
plaintext = malloc(pub_key.modulus->length_B * sizeof(bigint_word_t));
memcpy_P(plaintext, MSG, sizeof(MSG));
memcpy_P(seed, SEED, sizeof(SEED));
cli_putstr_P(PSTR("\r\nplaintext:"));
cli_hexdump_block(plaintext, sizeof(MSG), 4, 16);
cli_putstr_P(PSTR("\r\nseed:"));
cli_hexdump_block(seed, sizeof(SEED), 4, 16);
cli_putstr_P(PSTR("\r\nencrypting: ..."));
rc = rsa_encrypt_pkcs15(ciphertext, &clen, plaintext, sizeof(MSG), &pub_key, seed);
if(rc){
cli_putstr_P(PSTR("\r\nERROR: rsa_encrypt_pkcs15 returned: "));
cli_hexdump_byte(rc);
return;
}
cli_putstr_P(PSTR("\r\n\r\nciphertext:"));
cli_hexdump_block(ciphertext, clen, 4, 16);
if(clen!=sizeof(ENCRYPTED)){
cli_putstr_P(PSTR("\r\n>>FAIL (no size match)<<"));
}else{
if(memcmp_P(ciphertext, ENCRYPTED, clen)){
cli_putstr_P(PSTR("\r\n>>FAIL (no content match)<<"));
}else{
cli_putstr_P(PSTR("\r\n>>OK<<"));
}
}
cli_putstr_P(PSTR("\r\ndecrypting: ..."));
rc = rsa_decrypt_pkcs15(plaintext, &plen, ciphertext, clen, &priv_key, seed_out);
if(rc){
cli_putstr_P(PSTR("\r\nERROR: rsa_decrypt_pkcs15 returned: "));
cli_hexdump_byte(rc);
return;
}
cli_putstr_P(PSTR("\r\n\r\nplaintext:"));
cli_hexdump_block(plaintext, plen, 4, 16);
cli_putstr_P(PSTR("\r\n\r\nseed (out):"));
cli_hexdump_block(seed_out, sizeof(SEED), 4, 16);
free(ciphertext);
free(plaintext);
}
void run_seed_test(void){
uint8_t *msg, *ciph, *msg_;
uint16_t msg_len, ciph_len, msg_len_;
uint16_t seed_len;
uint8_t *seed, *seed_out;
char read_int_str[18];
cli_putstr_P(PSTR("\r\n== test with given seed =="));
cli_putstr_P(PSTR("\r\n = message ="));
cli_putstr_P(PSTR("\r\n length: "));
cli_getsn(read_int_str, 16);
msg_len = own_atou(read_int_str);
seed_len = rsa_pkcs15_compute_padlength_B(pub_key.modulus, msg_len);
seed = malloc(seed_len);
if(!seed){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
seed_out = malloc(seed_len);
if(!seed_out){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
msg = malloc(msg_len);
if(!msg){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
ciph = malloc(bigint_length_B(pub_key.modulus));
if(!ciph){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
msg_ = malloc(bigint_length_B(pub_key.modulus));
if(!msg_){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
cli_putstr_P(PSTR("\r\n data: "));
read_os(msg, msg_len, NULL);
cli_putstr_P(PSTR("\r\n seed (0x"));
cli_hexdump_rev(&seed_len, 2);
cli_putstr_P(PSTR(" bytes): "));
read_os(seed, seed_len, NULL);
cli_putstr_P(PSTR("\r\n encrypting ..."));
/*
cli_putstr_P(PSTR("\r\n plaintext:"));
cli_hexdump_block(msg, msg_len, 4, 16);
cli_putstr_P(PSTR("\r\n seed:"));
cli_hexdump_block(seed, seed_len, 4, 16);
*/
rsa_encrypt_pkcs15(ciph, &ciph_len, msg, msg_len, &pub_key, seed);
cli_putstr_P(PSTR("\r\n ciphertext:"));
cli_hexdump_block(ciph, ciph_len, 4, 16);
cli_putstr_P(PSTR("\r\n decrypting ... "));
rsa_decrypt_pkcs15(msg_, &msg_len_, ciph, ciph_len, &priv_key, seed_out);
cli_putstr_P(PSTR("[done]"));
if(msg_len != msg_len_){
char tstr[16];
cli_putstr_P(PSTR("\r\nERROR: wrong decrypted message length ("));
itoa(msg_len_, tstr, 10);
cli_putstr(tstr);
cli_putstr_P(PSTR(" instead of "));
itoa(msg_len, tstr, 10);
cli_putstr(tstr);
cli_putc(')');
goto end;
}
if(memcmp(msg, msg_, msg_len)){
cli_putstr_P(PSTR("\r\nERROR: wrong decrypted message:"));
cli_hexdump_block(msg_, msg_len_, 4, 16);
cli_putstr_P(PSTR("\r\nreference:"));
cli_hexdump_block(msg, msg_len, 4, 16);
goto end;
}
if(memcmp(seed, seed_out, seed_len)){
cli_putstr_P(PSTR("\r\nERROR: wrong decrypted seed:"));
cli_hexdump_block(seed_out, seed_len, 4, 16);
cli_putstr_P(PSTR("\r\nreference:"));
cli_hexdump_block(seed, seed_len, 4, 16);
goto end;
}
cli_putstr_P(PSTR("\r\n >>OK<<"));
end:
free(ciph);
free(msg_);
free(msg);
free(seed_out);
free(seed);
}
void reset_prng(void){
uint8_t buf[16];
memset(buf, 0, 16);
random_seed(buf);
cli_putstr_P(PSTR("\r\nPRNG reset"));
}
void rsa_init(void){
prng_get_byte = random8;
}
void load_key(void){
if(keys_allocated){
free_key();
}
keys_allocated = 1;
read_key_crt();
}
void test_dump(void){
char lstr[16];
int len;
cli_putstr_P(PSTR("\r\nenter dump length: "));
cli_getsn_cecho(lstr, 15);
len = own_atou(lstr);
cli_putstr_P(PSTR("\r\ndumping 0x"));
cli_hexdump_rev(&len, 2);
cli_putstr_P(PSTR(" byte:"));
cli_hexdump_block(pub_key.modulus->wordv, len, 4, 8);
}
/*****************************************************************************
* main *
*****************************************************************************/
const char echo_test_str[] PROGMEM = "echo-test";
const char reset_prng_str[] PROGMEM = "reset-prng";
const char load_key_str[] PROGMEM = "load-key";
const char load_fix_key_str[] PROGMEM = "load-fix-key";
const char quick_test_str[] PROGMEM = "quick-test";
const char seed_test_str[] PROGMEM = "seed-test";
const char dump_test_str[] PROGMEM = "dump-test";
const char performance_str[] PROGMEM = "performance";
const char echo_str[] PROGMEM = "echo";
const cmdlist_entry_t cmdlist[] PROGMEM = {
{ reset_prng_str, NULL, reset_prng },
{ load_key_str, NULL, load_key },
{ load_fix_key_str, NULL, load_fix_rsa },
{ quick_test_str, NULL, quick_test },
{ seed_test_str, NULL, run_seed_test },
{ dump_test_str, NULL, test_dump },
// { performance_str, NULL, testrun_performance_bigint },
{ echo_str, (void*)1, (void_fpt)echo_ctrl },
{ NULL, NULL, NULL }
};
void dump_sp(void){
uint8_t x;
uint8_t *xa = &x;
cli_putstr_P(PSTR("\r\nstack pointer: ~"));
cli_hexdump_rev(&xa, 4);
}
int main (void){
main_setup();
for(;;){
welcome_msg(algo_name);
rsa_init();
cmd_interface(cmdlist);
}
}