+ fix hmac-sha256

+ camelia (128 bit Key only) C/ASM and C only
This commit is contained in:
bg 2007-02-16 06:16:12 +00:00
parent 4d19a3429e
commit 38806fc750
10 changed files with 2414 additions and 4 deletions

339
COPYING Normal file
View File

@ -0,0 +1,339 @@
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

View File

@ -1,9 +1,12 @@
PRG = skipjack
PRG = rc6
# camellia
# cryptotest
OBJ = main-skipjack-test.o debug.o uart.o serial-tools.o skipjack.o
# OBJ = main-camellia-test.o debug.o uart.o serial-tools.o camellia.o camellia-asm.o
# main-skipjack-test.o debug.o uart.o serial-tools.o skipjack.o
# main-sha1-test.o debug.o uart.o serial-tools.o sha1-asm.o
# main-md5-test.o debug.o uart.o serial-tools.o md5.o
# main-cast5-test.o debug.o uart.o serial-tools.o cast5.o
OBJ = main-rc6-test.o debug.o uart.o serial-tools.o rc6.o
# main.o debug.o uart.o serial-tools.o sha256-asm.o xtea-asm.o arcfour-asm.o prng.o cast5.o
MCU_TARGET = atmega32
OPTIMIZE = -Os

977
camellia-asm.S Normal file
View File

@ -0,0 +1,977 @@
/*
* File: camellis-asm.S
* Author: Daniel Otte
* Date: 10.11.2006
* License: GPL
* Description: Implementation of the camellia block cipher algorithm.
*
*/
.macro SWAP_R A, B
eor \A, \B
eor \B, \A
eor \A, \B
.endm
.macro precall
/* push r18 - r27, r30 - r31*/
push r0
push r1
push r18
push r19
push r20
push r21
push r22
push r23
push r24
push r25
push r26
push r27
push r30
push r31
clr r1
.endm
.macro postcall
pop r31
pop r30
pop r27
pop r26
pop r25
pop r24
pop r23
pop r22
pop r21
pop r20
pop r19
pop r18
pop r1
pop r0
.endm
.macro hexdump length
push r27
push r26
ldi r25, '\r'
mov r24, r25
call uart_putc
ldi r25, '\n'
mov r24, r25
call uart_putc
pop r26
pop r27
movw r24, r26
.if \length > 16
ldi r22, lo8(16)
ldi r23, hi8(16)
push r27
push r26
call uart_hexdump
pop r26
pop r27
adiw r26, 16
hexdump \length-16
.else
ldi r22, lo8(\length)
ldi r23, hi8(\length)
call uart_hexdump
.endif
.endm
/* X points to Block */
.macro dbg_hexdump length
precall
hexdump \length
postcall
.endm
SPL = 0x3D
SPH = 0x3E
SREG = 0x3F
NULLr = 1
camellia_sbox:
.byte 112, 130, 44, 236, 179, 39, 192, 229, 228, 133, 87, 53, 234, 12, 174, 65
.byte 35, 239, 107, 147, 69, 25, 165, 33, 237, 14, 79, 78, 29, 101, 146, 189
.byte 134, 184, 175, 143, 124, 235, 31, 206, 62, 48, 220, 95, 94, 197, 11, 26
.byte 166, 225, 57, 202, 213, 71, 93, 61, 217, 1, 90, 214, 81, 86, 108, 77
.byte 139, 13, 154, 102, 251, 204, 176, 45, 116, 18, 43, 32, 240, 177, 132, 153
.byte 223, 76, 203, 194, 52, 126, 118, 5, 109, 183, 169, 49, 209, 23, 4, 215
.byte 20, 88, 58, 97, 222, 27, 17, 28, 50, 15, 156, 22, 83, 24, 242, 34
.byte 254, 68, 207, 178, 195, 181, 122, 145, 36, 8, 232, 168, 96, 252, 105, 80
.byte 170, 208, 160, 125, 161, 137, 98, 151, 84, 91, 30, 149, 224, 255, 100, 210
.byte 16, 196, 0, 72, 163, 247, 117, 219, 138, 3, 230, 218, 9, 63, 221, 148
.byte 135, 92, 131, 2, 205, 74, 144, 51, 115, 103, 246, 243, 157, 127, 191, 226
.byte 82, 155, 216, 38, 200, 55, 198, 59, 129, 150, 111, 75, 19, 190, 99, 46
.byte 233, 121, 167, 140, 159, 110, 188, 142, 41, 245, 249, 182, 47, 253, 180, 89
.byte 120, 152, 6, 106, 231, 70, 113, 186, 212, 37, 171, 66, 136, 162, 141, 250
.byte 114, 7, 185, 85, 248, 238, 172, 10, 54, 73, 42, 104, 60, 56, 241, 164
.byte 64, 40, 211, 123, 187, 201, 67, 193, 21, 227, 173, 244, 119, 199, 128, 158
//.global camellia_sigma
/*
camellia_sigma:
.quad 0xA09E667F3BCC908B
.quad 0xB67AE8584CAA73B2
.quad 0xC6EF372FE94F82BE
.quad 0x54FF53A5F1D36F1C
.quad 0x10E527FADE682D1D
.quad 0xB05688C2B3E6C1FD
*/
/* uint8_t camellia_s1(uint8_t b) */
.global camellia_s1
camellia_s1:
ldi r30, lo8(camellia_sbox)
ldi r31, hi8(camellia_sbox)
add r30, r24
adc r31, NULLr
lpm r24, Z
clr r25
ret
.global camellia_s2
camellia_s2:
ldi r30, lo8(camellia_sbox)
ldi r31, hi8(camellia_sbox)
add r30, r24
adc r31, NULLr
lpm r24, Z
lsl r24
adc r24, NULLr
clr r25
ret
.global camellia_s3
camellia_s3:
ldi r30, lo8(camellia_sbox)
ldi r31, hi8(camellia_sbox)
add r30, r24
adc r31, NULLr
lpm r24, Z
bst r24, 0
lsr r24
bld r24, 7
clr r25
ret
.global camellia_s4
camellia_s4:
ldi r30, lo8(camellia_sbox)
ldi r31, hi8(camellia_sbox)
lsl r24
adc r24, NULLr
add r30, r24
adc r31, NULLr
lpm r24, Z
clr r25
ret
.global camellia_s
/* uint64_t camellia_s(uint64_t d){
#define D ((uint8_t*)(&d))
D[7] = camellia_s1(D[7]); // MSB
D[6] = camellia_s2(D[6]);
D[5] = camellia_s3(D[5]);
D[4] = camellia_s4(D[4]);
D[3] = camellia_s2(D[3]);
D[2] = camellia_s3(D[2]);
D[1] = camellia_s4(D[1]);
D[0] = camellia_s1(D[0]); // LSB
#undef D
return d;
}*/
; parameters
; d: r18-r25 (r18 is LSB)
camellia_s:
movw r26, r24 ; backup r24,r25 -> X
clr r25
call camellia_s2
mov r26, r24
mov r24, r27
call camellia_s1
mov r27, r24
mov r24, r23
call camellia_s3
mov r23, r24
mov r24, r22
call camellia_s4
mov r22, r24
mov r24, r21
call camellia_s2
mov r21, r24
mov r24, r20
call camellia_s3
mov r20, r24
mov r24, r19
call camellia_s4
mov r19, r24
mov r24, r18
call camellia_s1
mov r18, r24
movw r24, r26
ret
;##############################################################################
/* uint64_t camellia_p(uint64_t d) */
; param: r18-r25 (r18 is LSB)
z1 = 25
z2 = 24
z3 = 23
z4 = 22
z5 = 21
z6 = 20
z7 = 19
z8 = 18
.global camellia_p
camellia_p:
eor z1, z6
eor z2, z7
eor z3, z8
eor z4, z5
eor z5, z3
eor z6, z4
eor z7, z1
eor z8, z2
;---------
eor z1, z8
eor z2, z5
eor z3, z6
eor z4, z7
eor z5, z4
eor z6, z1
eor z7, z2
eor z8, z3
;---------
movw r26, z8
movw r30, z6 ; backup z5 bis z8
movw z8, z4
movw z6, z2
movw z4, r26
movw z2, r30
ret
;##############################################################################
/* uint64_t camellia_f(uint64_t x, uint64_t k) */
; param x: r18-r25
; param k: r10-r17
.global camellia_f
camellia_f:
eor r18, r10
eor r19, r11
eor r20, r12
eor r21, r13
eor r22, r14
eor r23, r15
eor r24, r16
eor r25, r17
call camellia_s
call camellia_p
ret
;##############################################################################
/* uint64_t camellia_fl(uint64_t x, uint64_t k) */
; param x: r18-r25 xl: r22-r25, xr: r18-r21
; param k: r10-r17 kl: r14-r17, kr: r10-r13
kl1 = 14
kl2 = 15
kl3 = 16
kl4 = 17
kr1 = 10
kr2 = 11
kr3 = 12
kr4 = 13
xr1 = 18
xr2 = 19
xr3 = 20
xr4 = 21
xl1 = 22
xl2 = 23
xl3 = 24
xl4 = 25
.global camellia_fl
camellia_fl:
and kl1, xl1
and kl2, xl2
and kl3, xl3
and kl4, xl4
mov r26, kl4
rol r26
rol kl1
rol kl2
rol kl3
rol kl4
eor xr1, kl1
eor xr2, kl2
eor xr3, kl3
eor xr4, kl4
// that was part one
or kr1, xr1
or kr2, xr2
or kr3, xr3
or kr4, xr4
eor xl1, kr1
eor xl2, kr2
eor xl3, kr3
eor xl4, kr4
ret
;##############################################################################
/* uint64_t camellia_fl_inv(uint64_t y, uint64_t k) */
; param y: r18-r25 yl: r22-r25, yr: r18-r21
; param k: r10-r17 kl: r14-r17, kr: r10-r13
kl1 = 14
kl2 = 15
kl3 = 16
kl4 = 17
kr1 = 10
kr2 = 11
kr3 = 12
kr4 = 13
yr1 = 18
yr2 = 19
yr3 = 20
yr4 = 21
yl1 = 22
yl2 = 23
yl3 = 24
yl4 = 25
.global camellia_fl_inv
camellia_fl_inv:
or kr1, yr1
or kr2, yr2
or kr3, yr3
or kr4, yr4
eor yl1, kr1
eor yl2, kr2
eor yl3, kr3
eor yl4, kr4
// the first one is done
and kl1, yl1
and kl2, yl2
and kl3, yl3
and kl4, yl4
mov r26, kl4
rol r26
rol kl1
rol kl2
rol kl3
rol kl4
eor yr1, kl1
eor yr2, kl2
eor yr3, kl3
eor yr4, kl4
ret
;##############################################################################
; param s: r24-r25
; param q: r22
B1 = 18
B2 = 19
.global camellia128_keyop_rot15
camellia128_keyop_rot15:
movw r30, r24 ; Z points at LSB of kl ;-- 0
ldi r22, 2
2: adiw r30, 15 ;-- 15
ld r21, Z
ld r20, -Z ;-- 14
movw B1, r20 ; store Backup of the 2 MSB of kl
ror r20
ldi r21, 14
1: ld r20, -Z ;-- 13..0
ror r20
std Z+2, r20 ;-- (15..2)
dec r21
brne 1b
ror B2
ror B1
st Z+, B1 ;-- 1
st Z, B2
adiw r30, 15 ;-- 16
dec r22
brne 2b
ret
;##############################################################################
; param s: r24-r25
; param q: r22
.global camellia128_keyop_rot17
camellia128_keyop_rot17:
push r8
push r9
push r10
push r11
push r12
push r13
push r14
push r15
push r16
push r17
clt
movw r30, r24
clr r27
2: ldi r26, 8
mov r1, r26
lsl r1 ; r1=16
;push r1
; load 128bit value
ldd r0, Z+15
rol r0
1: ld r0, Z+
rol r0
st X+, r0
dec r1
brne 1b
st -Z, 21
st -Z, 20
st -Z, 19
st -Z, 18
st -Z, 17
st -Z, 16
st -Z, 15
st -Z, 14 ;--
st -Z, 13
st -Z, 12
st -Z, 11
st -Z, 10
st -Z, 9
st -Z, 8
st -Z, 23
st -Z, 22
brts 2f
set
adiw r30, 16
rjmp 2b
2:
pop r17
pop r16
pop r15
pop r14
pop r13
pop r12
pop r11
pop r10
pop r9
pop r8
ret
;##############################################################################
; param s: r24-r25
; param q: r22
.global camellia128_keyop
camellia128_keyop:
cpi r22, 1
breq camellia128_keyop_rot17
rjmp camellia128_keyop_rot15
;##############################################################################
; param s: r24-r25
; param q: r22
B1 = 18
B2 = 19
.global camellia128_keyop_inv_rot15
camellia128_keyop_inv_rot15:
movw r30, r24 ; Z points at LSB of kl ;-- 0
movw r26, r24 ; X also
ldi r22, 2
2: ;-- 0
ld r20, Z+ ;-- 0/1
ld r21, Z+ ;-- 1/2
movw B1, r20 ; store Backup of the 2 LSB of kl
rol r21
ldi r20, 14
1: ld r21, Z+ ;-- 2/14..3/16
rol r21
st X+, r21 ;-- (0..13)/(1..14)
dec r20
brne 1b
rol B1
rol B2
st X+, B1 ;-- 14/15
st X+, B2 ;-- 15/16
dec r22
brne 2b
ret
;##############################################################################
; param s: r24-r25
; param q: r22
.global camellia128_keyop_inv_rot17
camellia128_keyop_inv_rot17:
push r8
push r9
push r10
push r11
push r12
push r13
push r14
push r15
push r16
push r17
clt
movw r30, r24
clr r27
2: ldi r26, 8
mov r1, r26
lsl r1 ; r1=16
; load 128bit value
ld r0, Z
adiw r30, 16
ror r0
1: ld r0, -Z
ror r0
st X+, r0
dec r1
brne 1b
st Z+, 21
st Z+, 20
st Z+, 19
st Z+, 18
st Z+, 17
st Z+, 16
st Z+, 15
st Z+, 14 ;--
st Z+, 13
st Z+, 12
st Z+, 11
st Z+, 10
st Z+, 9
st Z+, 8
st Z+, 23
st Z+, 22
brts 2f
set
; adiw r30, 16
rjmp 2b
2:
pop r17
pop r16
pop r15
pop r14
pop r13
pop r12
pop r11
pop r10
pop r9
pop r8
ret
;##############################################################################
; param s: r24-r25
; param q: r22
.global camellia128_keyop_inv
camellia128_keyop_inv:
cpi r22, 1
breq camellia128_keyop_inv_rot17
rjmp camellia128_keyop_inv_rot15
;##############################################################################
; param p: r24-r25 pointer to data
; param l: r22 length of word
.global change_endian
change_endian:
movw r26, r24
movw r30, r24
add r30, r22
adc r31, r1
lsr r22
1:
ld r20, X
ld r21, -Z
st X+, r21
st Z, r20
dec r22
brne 1b
ret
;##############################################################################
#define SEL_KA 1
#define SEL_KL 0
#define KEY_POSTC1 0x00
#define KEY_POSTC2 0x01
#define KEY_INC2 0x02
#define KEY_DIR 0x04
#define KEY_DIR_NORM 0x00
#define KEY_DIR_INV 0x04
#define KEY_AMMOUNT 0x08
#define KEY_ROL17 0x08
#define KEY_ROL15 0x00
/*
void camellia_6rounds(camellia128_ctx_t* s, uint64_t* bl, uint64_t* br, uint8_t roundop, uint8_t keychoice){
uint8_t i;
uint64_t* k[4];
k[0] = &(s->kll);
k[1] = &(s->klr);
k[2] = &(s->kal);
k[3] = &(s->kar);
for(i=0; i<3; ++i){ / * each cycle * /
br[0] ^= camellia_f(bl[0],*(k[(keychoice&1)*2+((roundop&KEY_DIR)?1:0)]));
keychoice >>= 1;
if((i == 1) && (roundop&KEY_INC2)){
((roundop&KEY_DIR)?camellia128_keyop_inv:camellia128_keyop)(s,(roundop&KEY_AMMOUNT)?1:-1);
}
bl[0] ^= camellia_f(br[0],*(k[(keychoice&1)*2+((roundop&KEY_DIR)?0:1)]));
keychoice >>= 1;
/ * check if we should do some keyop * /
if((i == (roundop&1)) && (!(roundop&KEY_INC2)) ){
((roundop&KEY_DIR)?camellia128_keyop_inv:camellia128_keyop)(s,(roundop&KEY_AMMOUNT)?1:-1);
/ * isn't it fuckin nice what we can do in C?! * /
}
}
}
*/
; param s: r24-r25
; param bl: r22-r23
; param br: r20-r21
; param roundop: r18
; param keychoice: r16
s1 = 24
s2 = 25
bl1 = 22
bl2 = 23
br1 = 20
br2 = 22
xro = 18
kc = 16
xro_sec = 17
br1_sec = 10
br2_sec = 11
bl1_sec = 12
bl2_sec = 13
s1_sec = 14
t = 9
loop_cnt = 8
keyop_time = 7
.global camellia_6rounds
camellia_6rounds:
push r17
push r16
push r15
push r14
push r13
push r12
push r11
push r10
push r9
push r8
push r7
ldi r17, 6
mov loop_cnt, r17
mov xro_sec, xro
movw br1_sec, br1
movw bl1_sec, bl1
movw s1_sec, s1
clr keyop_time
inc keyop_time
sec
rol keyop_time // keyop_time == 3
SBRC xro, 1 // KEY_INC2
rjmp 1f
SBRS xro, 0 // KEY_POSTC1
inc keyop_time
SBRS xro, 0 // KEY_POSTC1
inc keyop_time
rjmp 2f
1: inc keyop_time
2:
main_loop:
/* now we load the key to r18-r25 */
movw r26, s1_sec
SBRC kc, 0 /* select between KA and KL */
adiw r26, 16
SBRC xro_sec, 2 // KEY_DIR
rjmp 2f
SBRS loop_cnt, 0 /* enc */
adiw r26, 8
rjmp 3f
2: SBRC loop_cnt, 0 /* dec */
adiw r26, 8
rjmp 3f
3:
lsr kc
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
ld r22, X+
ld r23, X+
ld r24, X+
ld r25, X+
/* now we xor bl in */
movw r26, bl1_sec
ld r0, X+
eor r18, r0
ld r0, X+
eor r19, r0
ld r0, X+
eor r20, r0
ld r0, X+
eor r21, r0
ld r0, X+
eor r22, r0
ld r0, X+
eor r23, r0
ld r0, X+
eor r24, r0
ld r0, X+
eor r25, r0
/* f(x,k) = p(s(x xor k)) ; xor is done */
call camellia_s;
call camellia_p;
// in r26, SPL
// in r27, SPH
// sbiw r26, 9
// dbg_hexdump 10
/* now we have to xor the result into br */
clr r31
ldi r30, 18
movw r26, br1_sec
; ldi r1, 8 ;-- this won't work
clr r1
sec
ror r1
swap r1
1: ld r0, X
ld t, Z+
eor r0, t
st X+, r0
dec r1
brne 1b
/* check for keyop */
cp loop_cnt, keyop_time
brne 3f
movw s1, s1_sec
ldi r22, 1
SBRS xro_sec, 3 // KEY_ROL17
neg r22
SBRS xro_sec, 2 // KEY_DIR
rjmp 2f
call camellia128_keyop_inv
rjmp 3f
2: call camellia128_keyop
3: /* loop back */
SWAP_R br1_sec, bl1_sec
SWAP_R br2_sec, bl2_sec
dec loop_cnt
breq 2f
jmp main_loop
2:
pop r7
pop r8
pop r9
pop r10
pop r11
pop r12
pop r13
pop r14
pop r15
pop r16
pop r17
ret
;##############################################################################
/*
void camellia128_init(camellia128_ctx_t* s, uint8_t* key){
uint8_t i;
s->kll = 0; //((uint64_t*)key)[0];
/ * load the key, endian-adjusted, to kll,klr * /
for(i=0; i<8; ++i){
s->kll <<= 8;
s->kll |= *key++;
}
for(i=0; i<8; ++i){
s->klr <<= 8;
s->klr |= *key++;
}
s->kal = s->kll;
s->kar = s->klr;
s->kar ^= camellia_f(s->kal, camellia_sigma[0]);
s->kal ^= camellia_f(s->kar, camellia_sigma[1]);
s->kal ^= s->kll;
s->kar ^= s->klr;
s->kar ^= camellia_f(s->kal, camellia_sigma[2]);
s->kal ^= camellia_f(s->kar, camellia_sigma[3]);
/ * * /
// uart_putstr("\n\r----------------init finished--------------------");
}
*/
/*
X64_xor_in:
ld r0, X+
eor r18, r0
ld r0, X+
eor r19, r0
ld r0, X+
eor r20, r0
ld r0, X+
eor r21, r0
ld r0, X+
eor r22, r0
ld r0, X+
eor r23, r0
ld r0, X+
eor r24, r0
ld r0, X+
eor r25, r0
ret
X64_load:
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
ld r22, X+
ld r23, X+
ld r24, X+
ld r25, X+
ret
Y64_load_xor_store:
ld r0, Y
eor r18, r0
st Y+, r18
ld r0, Y
eor r19, r0
st Y+, r19
ld r0, Y
eor r20, r0
st Y+, r20
ld r0, Y
eor r21, r0
st Y+, r21
ld r0, Y
eor r22, r0
st Y+, r22
ld r0, Y
eor r23, r0
st Y+, r23
ld r0, Y
eor r24, r0
st Y+, r24
ld r0, Y
eor r25, r0
st Y+, r25
ret
; param s: r24-r25
; param *k: r22-r23
//.global camellia128_init
camellia128_init:
push r29
push r28
movw r30, r24 ; Z is statepointer
movw r26, r22 ; X is keypointer
clr r29
ldi r28, 18
// / * load key into kl, ka and kal to r18:r25 * /
adiw r26, 128/8 ;-- 16
ldi r16, (128/8)-1
1: ld r17, -X
std Z+(128/8), r17
st Z+, r17
sbrs r16, 3
st Y+, r17 ; this should only be done the last 8 rounds 0<=r16<=7
dec r16
brpl 1b
// / * step 1 * /
ldi r26, lo8(camellia_sigma)
ldi r27, hi8(camellia_sigma)
call X64_xor_in
call camellia_s
call camellia_p // / * f(x,k) is done * /
sbiw r30, 128/8
movw r28, r30 ; Z&Y point on kar now
call Y64_load_xor_store
// / * step 2 now * /
call X64_xor_in
call camellia_s
call camellia_p // / * f(x,k) is done * /
call Y64_load_xor_store
// / * now the xor part (kl and kr) * /
sbiw r30, 128/8 ; Z points to klr
ldi r16, 128/8
1: ld r0, Z+
ldd r1, Z+(128/8)-1
eor r0, r1
std Z+(128/8)-1, r0
dec r16
brne 1b
// / * now s->kar ^= camellia_f(s->kal, camellia_sigma[2]); * /
call X64_load ; load sigma[2]
movw r26, r28 ; X&Y point at kal
call X64_xor_in
call camellia_s
call camellia_p
sbiw r28, 128/8/2 ; Y points at kar
call Y64_load_xor_store
// / * now s->kal ^= camellia_f(s->kar, camellia_sigma[3]); * /
sbiw r26, 128/8 ;
call X64_load ; load kar
ldi r26, lo8(camellia_sigma+3*8)
ldi r27, hi8(camellia_sigma+3*8)
call X64_xor_in ; xor sigma[3] in
call camellia_s
call camellia_p
call Y64_load_xor_store
pop r28
pop r29
ret
//*/

210
camellia.c Normal file
View File

@ -0,0 +1,210 @@
/**
*
*
*
*
*/
#include <stdint.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include "camellia.h"
#include "uart.h"
#include "debug.h"
#include <util/delay.h>
/*****************************************************************************/
uint64_t camellia_f(uint64_t x, uint64_t k);
/*****************************************************************************/
uint64_t camellia_fl(uint64_t x, uint64_t k);
/*****************************************************************************/
uint64_t camellia_fl_inv(uint64_t y, uint64_t k);
/*****************************************************************************/
void change_endian(void* data, uint8_t length);
uint64_t camellia_sigma[6]={
0xA09E667F3BCC908BLL,
0xB67AE8584CAA73B2LL,
0xC6EF372FE94F82BELL,
0x54FF53A5F1D36F1CLL,
0x10E527FADE682D1DLL,
0xB05688C2B3E6C1FDLL
};
/*****************************************************************************/
void camellia128_ctx_dump(camellia128_ctx_t *s){
uart_putstr("\r\n==State Dump==");
uart_putstr("\n\rKAl: "); uart_hexdump(&(s->kal), 8);
uart_putstr("\n\rKAr: "); uart_hexdump(&(s->kar), 8);
uart_putstr("\n\rKLl: "); uart_hexdump(&(s->kll), 8);
uart_putstr("\n\rKLr: "); uart_hexdump(&(s->klr), 8);
return;
}
/*****************************************************************************/
//*
//extern prog_uint64_t camellia_sigma[6];
void camellia128_init(camellia128_ctx_t* s, uint8_t* key){
uint8_t i;
s->kll = 0; //((uint64_t*)key)[0];
// / * load the key, endian-adjusted, to kll,klr * /
for(i=0; i<8; ++i){
s->kll <<= 8;
s->kll |= *key++;
}
for(i=0; i<8; ++i){
s->klr <<= 8;
s->klr |= *key++;
}
s->kal = s->kll;
s->kar = s->klr;
s->kar ^= camellia_f(s->kal, camellia_sigma[0]);
s->kal ^= camellia_f(s->kar, camellia_sigma[1]);
s->kal ^= s->kll;
s->kar ^= s->klr;
s->kar ^= camellia_f(s->kal, camellia_sigma[2]);
s->kal ^= camellia_f(s->kar, camellia_sigma[3]);
// / ** /
// uart_putstr("\n\r----------------init finished--------------------");
}
//*/
/*****************************************************************************/
void camellia128_keyop(camellia128_ctx_t* s, int8_t q);
/*****************************************************************************/
void camellia128_keyop_inv(camellia128_ctx_t* s, int8_t q);
/*****************************************************************************/
#define SEL_KA 1
#define SEL_KL 0
#define KEY_POSTC1 0x00
#define KEY_POSTC2 0x01
#define KEY_INC2 0x02
#define KEY_DIR 0x04
#define KEY_DIR_NORM 0x00
#define KEY_DIR_INV 0x04
#define KEY_AMMOUNT 0x08
#define KEY_ROL17 0x08
#define KEY_ROL15 0x00
void camellia_6rounds(camellia128_ctx_t* s, uint64_t* bl, uint64_t* br, uint8_t roundop, uint8_t keychoice);
/*****************************************************************************/
void camellia128_enc(camellia128_ctx_t* s, void* block){
#define BL (((uint64_t*)block)[0])
#define BR (((uint64_t*)block)[1])
/* endian adjustment */
/*BL*/
/* 1 2 3 4 5 6 7 8
* 8 7 6 5 4 3 2 1
*/
uint64_t temp64;
change_endian(&BL, 64/8);
change_endian(&BR, 64/8);
/* Prewhitening */
BL ^= s->kll;
BR ^= s->klr;
/* the first 6 */
camellia_6rounds(s, &BL, &BR, KEY_ROL15 | KEY_DIR_NORM | KEY_POSTC1 , 0x33);
/* FL injection */
camellia128_keyop(s, -1);
BL = camellia_fl(BL, s->kal);
BR = camellia_fl_inv(BR, s->kar);
camellia128_keyop(s, -1);
/* middle 6 */
camellia_6rounds(s, &BL, &BR, KEY_ROL15 | KEY_DIR_NORM | KEY_INC2 , 0x34);
/* FL injection */
camellia128_keyop(s, 1);
BL = camellia_fl(BL, s->kll);
BR = camellia_fl_inv(BR, s->klr);
camellia128_keyop(s, 1);
/* last 6 */
camellia_6rounds(s, &BL, &BR, KEY_ROL17 | KEY_DIR_NORM | KEY_POSTC2 , 0x0C);
/* Postwhitening */
BR ^= s->kal;
BL ^= s->kar;
temp64 = BR;
BR = BL;
BL = temp64;
change_endian(&BL, 64/8);
change_endian(&BR, 64/8);
#undef BL
#undef BR
}
/*****************************************************************************/
void camellia128_dec(camellia128_ctx_t* s, void* block){
#define BL (((uint64_t*)block)[1])
#define BR (((uint64_t*)block)[0])
/* endian adjustment */
/*BL*/
/* 1 2 3 4 5 6 7 8
* 8 7 6 5 4 3 2 1
*/
uint64_t temp64;
change_endian(&BL, 64/8);
change_endian(&BR, 64/8);
camellia128_keyop_inv(s, 1);
/* Prewhitening */
BR ^= s->kal; /* kw3 */
BL ^= s->kar; /* kw4 */
/* the first 6 */
camellia_6rounds(s, &BR, &BL, KEY_ROL17 | KEY_DIR_INV | KEY_POSTC1 , 0x0C);
/* FL injection */
camellia128_keyop_inv(s, 1);
BR = camellia_fl(BR, s->klr);
BL = camellia_fl_inv(BL, s->kll);
camellia128_keyop_inv(s, 1);
/* middle 6 */
camellia_6rounds(s, &BR, &BL, KEY_ROL15 | KEY_DIR_INV | KEY_INC2 , 0x0B);
/* FL injection */
camellia128_keyop_inv(s, -1);
BR = camellia_fl(BR, s->kar);
BL = camellia_fl_inv(BL, s->kal);
camellia128_keyop_inv(s, -1);
/* last 6 */
camellia_6rounds(s, &BR, &BL, KEY_ROL15 | KEY_DIR_INV | KEY_POSTC2 , 0x33);
/* Postwhitening */
BL ^= s->kll; /* kw1 */
BR ^= s->klr; /* kw2 */
temp64 = BR;
BR = BL;
BL = temp64;
change_endian(&BL, 64/8);
change_endian(&BR, 64/8);
}
/*****************************************************************************/
/*****************************************************************************/
/* EOF */

19
camellia.h Normal file
View File

@ -0,0 +1,19 @@
#ifndef CAMELLIA_H_
#define CAMELLIA_H_
#include <stdint.h>
typedef struct camellia128_ctx_s{
uint64_t klr;
uint64_t kll;
uint64_t kar;
uint64_t kal;
}camellia128_ctx_t;
void camellia128_init(camellia128_ctx_t* s, uint8_t* key);
void camellia128_enc(camellia128_ctx_t* s, void* block);
void camellia128_dec(camellia128_ctx_t* s, void* block);
#endif /*CAMELLIA_H_*/

529
camellia_C.c Normal file
View File

@ -0,0 +1,529 @@
/**
*
*
*
*
*/
#include <stdint.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include "camellia.h"
#include "uart.h"
#include "debug.h"
#include <util/delay.h>
/*****************************************************************************/
uint8_t rol(uint8_t a, uint8_t n){return ((a<<n) | (a>>(8-n)));}
/*****************************************************************************/
uint8_t ror(uint8_t a, uint8_t n){return ((a<<(8-n)) | (a>>n));}
/*****************************************************************************/
uint32_t rol32(uint32_t a, uint8_t n){
return ((a<<n)|(a>>(32-n)));
}
/*****************************************************************************/
uint64_t rol64(uint64_t a, uint8_t n){
return ((a<<n)|(a>>(64-n)));
}
/*****************************************************************************/
uint8_t camellia_s1_table[256] PROGMEM = {
112, 130, 44, 236, 179, 39, 192, 229, 228, 133, 87, 53, 234, 12, 174, 65,
35, 239, 107, 147, 69, 25, 165, 33, 237, 14, 79, 78, 29, 101, 146, 189,
134, 184, 175, 143, 124, 235, 31, 206, 62, 48, 220, 95, 94, 197, 11, 26,
166, 225, 57, 202, 213, 71, 93, 61, 217, 1, 90, 214, 81, 86, 108, 77,
139, 13, 154, 102, 251, 204, 176, 45, 116, 18, 43, 32, 240, 177, 132, 153,
223, 76, 203, 194, 52, 126, 118, 5, 109, 183, 169, 49, 209, 23, 4, 215,
20, 88, 58, 97, 222, 27, 17, 28, 50, 15, 156, 22, 83, 24, 242, 34,
254, 68, 207, 178, 195, 181, 122, 145, 36, 8, 232, 168, 96, 252, 105, 80,
170, 208, 160, 125, 161, 137, 98, 151, 84, 91, 30, 149, 224, 255, 100, 210,
16, 196, 0, 72, 163, 247, 117, 219, 138, 3, 230, 218, 9, 63, 221, 148,
135, 92, 131, 2, 205, 74, 144, 51, 115, 103, 246, 243, 157, 127, 191, 226,
82, 155, 216, 38, 200, 55, 198, 59, 129, 150, 111, 75, 19, 190, 99, 46,
233, 121, 167, 140, 159, 110, 188, 142, 41, 245, 249, 182, 47, 253, 180, 89,
120, 152, 6, 106, 231, 70, 113, 186, 212, 37, 171, 66, 136, 162, 141, 250,
114, 7, 185, 85, 248, 238, 172, 10, 54, 73, 42, 104, 60, 56, 241, 164,
64, 40, 211, 123, 187, 201, 67, 193, 21, 227, 173, 244, 119, 199, 128, 158
};
/*****************************************************************************/
uint8_t camellia_s1(uint8_t b){
return pgm_read_byte_near(&(camellia_s1_table[b]));
}
/*****************************************************************************/
uint8_t camellia_s2(uint8_t b){
return rol(pgm_read_byte_near(&(camellia_s1_table[b])),1);
}
/*****************************************************************************/
uint8_t camellia_s3(uint8_t b){
return ror(pgm_read_byte_near(&(camellia_s1_table[b])),1);
}
/*****************************************************************************/
uint8_t camellia_s4(uint8_t b){
return pgm_read_byte_near(&(camellia_s1_table[rol(b,1)]));
}
/*****************************************************************************/
uint64_t camellia_s(uint64_t d){
// uart_putstr("\n\r S von "); uart_hexdump(&(d), 8);
#define D ((uint8_t*)(&d))
D[7] = camellia_s1(D[7]);
D[6] = camellia_s2(D[6]);
D[5] = camellia_s3(D[5]);
D[4] = camellia_s4(D[4]);
D[3] = camellia_s2(D[3]);
D[2] = camellia_s3(D[2]);
D[1] = camellia_s4(D[1]);
D[0] = camellia_s1(D[0]);
#undef D
// uart_putstr(" ist "); uart_hexdump(&(d), 8);
return d;
}
/*****************************************************************************/
uint64_t camellia_p(uint64_t d){
uint64_t z=0;
#define D ((uint8_t*)(&d))
#define Z ((uint8_t*)(&z))
/*
Z[0] = D[4] ^ D[3] ^ D[1];
Z[1] = D[5] ^ D[0] ^ D[2];
Z[2] = D[6] ^ D[1] ^ D[3];
Z[3] = D[7] ^ D[2] ^ D[0];
Z[4] = D[0] ^ D[6] ^ D[5];
Z[5] = D[1] ^ D[7] ^ D[6];
Z[6] = D[2] ^ D[4] ^ D[7];
Z[7] = D[3] ^ D[5] ^ D[4];
*/
// Z[7] = z1 z3 z4 z6 z7 z8
// uart_putstr("\n\r P von "); uart_hexdump(&(d), 8);
Z[7] = D[7] ^ D[5] ^ D[4] ^ D[2] ^ D[1] ^ D[0];
Z[6] = D[7] ^ D[6] ^ D[4] ^ D[3] ^ D[1] ^ D[0];
Z[5] = D[7] ^ D[6] ^ D[5] ^ D[3] ^ D[2] ^ D[0];
Z[4] = D[6] ^ D[5] ^ D[4] ^ D[3] ^ D[2] ^ D[1] ;
Z[3] = D[7] ^ D[6] ^ D[2] ^ D[1] ^ D[0];
Z[2] = D[6] ^ D[5] ^ D[3] ^ D[1] ^ D[0];
Z[1] = D[5] ^ D[4] ^ D[3] ^ D[2] ^ D[0];
Z[0] = D[7] ^ D[4] ^ D[3] ^ D[2] ^ D[1] ;
// uart_putstr(" ist "); uart_hexdump(&(z), 8);
#undef Z
#undef D
return z;
}
/*****************************************************************************/
uint64_t camellia_f(uint64_t x, uint64_t k){
uint64_t y;
y = camellia_p(camellia_s(x ^ k));
/*
uart_putstr("\r\nEfunc X=");
uart_hexdump(&(x), 8);
uart_putstr(" K=");
uart_hexdump(&(k), 8);
uart_putstr(" Y=");
uart_hexdump(&(y), 8);
*/
return y;
}
/*****************************************************************************/
uint64_t camellia_fl(uint64_t x, uint64_t k){
volatile uint64_t lx[1], lk[1], y[1];
lx[0]=x; lk[0] = k;
#define Y ((uint32_t*)y)
#define X ((uint32_t*)lx)
#define K ((uint32_t*)lk)
Y[0] = rol32((X[1]) & K[1],1) ^ (X[0]); /* Yr */
Y[1] = (Y[0] | K[0]) ^ (X[1]); /* Yl */
/*
uart_putstr("\r\nFL(");
uart_hexdump(&(x), 8);
uart_putstr(", ");
uart_hexdump(&(k), 8);
uart_putstr(") = ");
uart_hexdump(y, 8);
*/
#undef K
#undef X
#undef Y
return y[0];
}
/*****************************************************************************/
uint64_t camellia_fl_inv(uint64_t y, uint64_t k){
//volatile uint32_t xl, xr;
volatile uint64_t ly[1], lk[1], x[1];
ly[0]=y; lk[0] = k;
#define Y ((uint32_t*)ly)
#define X ((uint32_t*)x)
#define K ((uint32_t*)lk)
X[1]=(Y[0] | K[0]) ^ Y[1];
X[0]=rol32((X[1] & K[1]),1) ^ Y[0];
/*
uart_putstr("\r\nFL_inv(");
uart_hexdump(&(y), 8);
uart_putstr(", ");
uart_hexdump(&(k), 8);
uart_putstr(") = ");
*/
#undef K
#undef X
#undef Y
return x[0];
}
/*****************************************************************************/
uint64_t camellia_sigma[6]={
0xA09E667F3BCC908BLL,
0xB67AE8584CAA73B2LL,
0xC6EF372FE94F82BELL,
0x54FF53A5F1D36F1CLL,
0x10E527FADE682D1DLL,
0xB05688C2B3E6C1FDLL
};
/*****************************************************************************/
void camellia128_ctx_dump(camellia128_ctx_t *s){
uart_putstr("\r\n==State Dump==");
uart_putstr("\n\rKAl: "); uart_hexdump(&(s->kal), 8);
uart_putstr("\n\rKAr: "); uart_hexdump(&(s->kar), 8);
uart_putstr("\n\rKLl: "); uart_hexdump(&(s->kll), 8);
uart_putstr("\n\rKLr: "); uart_hexdump(&(s->klr), 8);
return;
}
/*****************************************************************************/
void camellia128_init(camellia128_ctx_t* s, uint8_t* key){
uint8_t i;
s->kll = 0; //((uint64_t*)key)[0];
/* load the key, endian-adjusted, to kll,klr */
for(i=0; i<8; ++i){
s->kll <<= 8;
s->kll |= *key++;
}
for(i=0; i<8; ++i){
s->klr <<= 8;
s->klr |= *key++;
}
s->kal = s->kll;
s->kar = s->klr;
s->kar ^= camellia_f(s->kal, camellia_sigma[0]);
s->kal ^= camellia_f(s->kar, camellia_sigma[1]);
s->kal ^= s->kll;
s->kar ^= s->klr;
s->kar ^= camellia_f(s->kal, camellia_sigma[2]);
s->kal ^= camellia_f(s->kar, camellia_sigma[3]);
/**/
// uart_putstr("\n\r----------------init finished--------------------");
}
/*****************************************************************************/
void camellia128_keyop(camellia128_ctx_t* s, int8_t q){
/* first we do 16 bit left-rols for kl and ka (128bit each) */
uint32_t temp;
temp = (s->kal)>>(64-16-q);
s->kal = s->kal<<(16+q) | s->kar>>(64-16-q);
s->kar = s->kar<<(16+q) | temp;
temp = (s->kll)>>(64-16-q);
s->kll = s->kll<<(16+q) | s->klr>>(64-16-q);
s->klr = s->klr<<(16+q) | temp;
/* after doing the 16-bit rol we have to rol 1 bit left or rigth depending on q */
}
/*****************************************************************************/
void camellia128_keyop_inv(camellia128_ctx_t* s, int8_t q){
/* first we do 16 bit right-rols for kl and ka (128bit each) */
uint32_t temp;
temp = (s->kar)&(0xffffff>>(24-16-q));
s->kar = s->kar>>(16+q) | s->kal<<(64-16-q);
s->kal = s->kal>>(16+q) | ((uint64_t)temp)<<(64-16-q);
temp = (s->klr)&(0xffffff>>(24-16-q));
s->klr = s->klr>>(16+q) | s->kll<<(64-16-q);
s->kll = s->kll>>(16+q) | ((uint64_t)temp)<<(64-16-q);
/* after doing the 16-bit rol we have to rol 1 bit left or rigth depending on q */
}
/*****************************************************************************/
#define SEL_KA 1
#define SEL_KL 0
#define KEY_POSTC1 0x00
#define KEY_POSTC2 0x01
#define KEY_INC2 0x02
#define KEY_DIR 0x04
#define KEY_DIR_NORM 0x00
#define KEY_DIR_INV 0x04
#define KEY_AMMOUNT 0x08
#define KEY_ROL17 0x08
#define KEY_ROL15 0x00
void camellia_6rounds(camellia128_ctx_t* s, uint64_t* bl, uint64_t* br, uint8_t roundop, uint8_t keychoice){
uint8_t i;
uint64_t* k[4];
k[0] = &(s->kll);
k[1] = &(s->klr);
k[2] = &(s->kal);
k[3] = &(s->kar);
for(i=0; i<3; ++i){ /* each cycle */
br[0] ^= camellia_f(bl[0],*(k[(keychoice&1)*2+((roundop&KEY_DIR)?1:0)]));
keychoice >>= 1;
if((i == 1) && (roundop&KEY_INC2)){
((roundop&KEY_DIR)?camellia128_keyop_inv:camellia128_keyop)(s,(roundop&KEY_AMMOUNT)?1:-1);
}
bl[0] ^= camellia_f(br[0],*(k[(keychoice&1)*2+((roundop&KEY_DIR)?0:1)]));
keychoice >>= 1;
/* check if we should do some keyop */
if((i == (roundop&1)) && (!(roundop&KEY_INC2)) ){
((roundop&KEY_DIR)?camellia128_keyop_inv:camellia128_keyop)(s,(roundop&KEY_AMMOUNT)?1:-1);
/* isn't it fuckin nice what we can do in C?! */
}
}
}
/*****************************************************************************/
void camellia128_enc(camellia128_ctx_t* s, void* block){
#define BL (((uint64_t*)block)[0])
#define BR (((uint64_t*)block)[1])
/* endian adjustment */
/*BL*/
/* 1 2 3 4 5 6 7 8
* 8 7 6 5 4 3 2 1
*/
uint64_t temp64;
temp64 = BL;
BL = temp64 >> 56 | temp64 << 56 /* swap the most out bytes (1 & 8) */
| (temp64 & (0xffLL<<48))>>(5*8) | (temp64 & (0xffLL<< 8))<<(5*8) /* 2 & 7 */
| (temp64 & (0xffLL<<40))>>(3*8) | (temp64 & (0xffLL<<16))<<(3*8) /* 3 & 6 */
| (temp64 & (0xffLL<<32))>>(1*8) | (temp64 & (0xffLL<<24))<<(1*8); /* 4 & 5 */
temp64 = BR;
BR = temp64 >> 56 | temp64 << 56 /* swap the most out bytes (1 & 8) */
| (temp64 & (0xffLL<<48))>>(5*8) | (temp64 & (0xffLL<< 8))<<(5*8) /* 2 & 7 */
| (temp64 & (0xffLL<<40))>>(3*8) | (temp64 & (0xffLL<<16))<<(3*8) /* 3 & 6 */
| (temp64 & (0xffLL<<32))>>(1*8) | (temp64 & (0xffLL<<24))<<(1*8); /* 4 & 5 */
/* Prewhitening */
BL ^= s->kll;
BR ^= s->klr;
/* the first 6 */
/*
BR ^= camellia_f(BL, s->kal);
BL ^= camellia_f(BR, s->kar);
camellia128_keyop(s, -1);
BR ^= camellia_f(BL, s->kll);
BL ^= camellia_f(BR, s->klr);
BR ^= camellia_f(BL, s->kal);
BL ^= camellia_f(BR, s->kar);
*/
camellia_6rounds(s, &BL, &BR, KEY_ROL15 | KEY_DIR_NORM | KEY_POSTC1 , 0x33);
/* FL injection */
camellia128_keyop(s, -1);
BL = camellia_fl(BL, s->kal);
BR = camellia_fl_inv(BR, s->kar);
camellia128_keyop(s, -1);
/* middle 6 */
/* BR ^= camellia_f(BL, s->kll);
BL ^= camellia_f(BR, s->klr);
BR ^= camellia_f(BL, s->kal);
camellia128_keyop(s, -1);
BL ^= camellia_f(BR, s->klr);
BR ^= camellia_f(BL, s->kal);
BL ^= camellia_f(BR, s->kar);
/*/
camellia_6rounds(s, &BL, &BR, KEY_ROL15 | KEY_DIR_NORM | KEY_INC2 , 0x34);
/* FL injection */
camellia128_keyop(s, 1);
BL = camellia_fl(BL, s->kll);
BR = camellia_fl_inv(BR, s->klr);
camellia128_keyop(s, 1);
/* last 6 */
/* BR ^= camellia_f(BL, s->kll);
BL ^= camellia_f(BR, s->klr);
BR ^= camellia_f(BL, s->kal);
BL ^= camellia_f(BR, s->kar);
camellia128_keyop(s, 1);
BR ^= camellia_f(BL, s->kll);
BL ^= camellia_f(BR, s->klr);
*/
camellia_6rounds(s, &BL, &BR, KEY_ROL17 | KEY_DIR_NORM | KEY_POSTC2 , 0x0C);
/* Postwhitening */
BR ^= s->kal;
BL ^= s->kar;
temp64 = BR;
BR = BL;
BL = temp64;
BL = temp64 >> 56 | temp64 << 56 /* swap the most out bytes (1 & 8) */
| (temp64 & (0xffLL<<48))>>(5*8) | (temp64 & (0xffLL<< 8))<<(5*8) /* 2 & 7 */
| (temp64 & (0xffLL<<40))>>(3*8) | (temp64 & (0xffLL<<16))<<(3*8) /* 3 & 6 */
| (temp64 & (0xffLL<<32))>>(1*8) | (temp64 & (0xffLL<<24))<<(1*8); /* 4 & 5 */
temp64 = BR;
BR = temp64 >> 56 | temp64 << 56 /* swap the most out bytes (1 & 8) */
| (temp64 & (0xffLL<<48))>>(5*8) | (temp64 & (0xffLL<< 8))<<(5*8) /* 2 & 7 */
| (temp64 & (0xffLL<<40))>>(3*8) | (temp64 & (0xffLL<<16))<<(3*8) /* 3 & 6 */
| (temp64 & (0xffLL<<32))>>(1*8) | (temp64 & (0xffLL<<24))<<(1*8); /* 4 & 5 */
#undef BL
#undef BR
}
/*****************************************************************************/
void camellia128_dec(camellia128_ctx_t* s, void* block){
#define BL (((uint64_t*)block)[1])
#define BR (((uint64_t*)block)[0])
/* endian adjustment */
/*BL*/
/* 1 2 3 4 5 6 7 8
* 8 7 6 5 4 3 2 1
*/
uint64_t temp64;
temp64 = BL;
BL = temp64 >> 56 | temp64 << 56 /* swap the most out bytes (1 & 8) */
| (temp64 & (0xffLL<<48))>>(5*8) | (temp64 & (0xffLL<< 8))<<(5*8) /* 2 & 7 */
| (temp64 & (0xffLL<<40))>>(3*8) | (temp64 & (0xffLL<<16))<<(3*8) /* 3 & 6 */
| (temp64 & (0xffLL<<32))>>(1*8) | (temp64 & (0xffLL<<24))<<(1*8); /* 4 & 5 */
temp64 = BR;
BR = temp64 >> 56 | temp64 << 56 /* swap the most out bytes (1 & 8) */
| (temp64 & (0xffLL<<48))>>(5*8) | (temp64 & (0xffLL<< 8))<<(5*8) /* 2 & 7 */
| (temp64 & (0xffLL<<40))>>(3*8) | (temp64 & (0xffLL<<16))<<(3*8) /* 3 & 6 */
| (temp64 & (0xffLL<<32))>>(1*8) | (temp64 & (0xffLL<<24))<<(1*8); /* 4 & 5 */
camellia128_keyop_inv(s, 1);
/* Prewhitening */
BR ^= s->kal; /* kw3 */
BL ^= s->kar; /* kw4 */
/* the first 6 */
/*
BL ^= camellia_f(BR, s->klr); /* k18 * /
BR ^= camellia_f(BL, s->kll); /* k17 * /
camellia128_keyop_inv(s, 1);
BL ^= camellia_f(BR, s->kar);
BR ^= camellia_f(BL, s->kal);
BL ^= camellia_f(BR, s->klr);
BR ^= camellia_f(BL, s->kll);
*/
camellia_6rounds(s, &BR, &BL, KEY_ROL17 | KEY_DIR_INV | KEY_POSTC1 , 0x0C);
/* FL injection */
camellia128_keyop_inv(s, 1);
BR = camellia_fl(BR, s->klr);
BL = camellia_fl_inv(BL, s->kll);
camellia128_keyop_inv(s, 1);
/* middle 6 */
/* BL ^= camellia_f(BR, s->kar);
BR ^= camellia_f(BL, s->kal);
BL ^= camellia_f(BR, s->klr);
camellia128_keyop_inv(s, -1);
BR ^= camellia_f(BL, s->kal);
BL ^= camellia_f(BR, s->klr);
BR ^= camellia_f(BL, s->kll);
*/
camellia_6rounds(s, &BR, &BL, KEY_ROL15 | KEY_DIR_INV | KEY_INC2 , 0x0B);
/* FL injection */
camellia128_keyop_inv(s, -1);
BR = camellia_fl(BR, s->kar);
BL = camellia_fl_inv(BL, s->kal);
camellia128_keyop_inv(s, -1);
/* last 6 */
/*
BL ^= camellia_f(BR, s->kar);
BR ^= camellia_f(BL, s->kal);
BL ^= camellia_f(BR, s->klr);
BR ^= camellia_f(BL, s->kll);
camellia128_keyop_inv(s, -1);
BL ^= camellia_f(BR, s->kar);
BR ^= camellia_f(BL, s->kal);
/*/
camellia_6rounds(s, &BR, &BL, KEY_ROL15 | KEY_DIR_INV | KEY_POSTC2 , 0x33);
/* Postwhitening */
BL ^= s->kll; /* kw1 */
BR ^= s->klr; /* kw2 */
temp64 = BR;
BR = BL;
BL = temp64;
BL = temp64 >> 56 | temp64 << 56 /* swap the most out bytes (1 & 8) */
| (temp64 & (0xffLL<<48))>>(5*8) | (temp64 & (0xffLL<< 8))<<(5*8) /* 2 & 7 */
| (temp64 & (0xffLL<<40))>>(3*8) | (temp64 & (0xffLL<<16))<<(3*8) /* 3 & 6 */
| (temp64 & (0xffLL<<32))>>(1*8) | (temp64 & (0xffLL<<24))<<(1*8); /* 4 & 5 */
temp64 = BR;
BR = temp64 >> 56 | temp64 << 56 /* swap the most out bytes (1 & 8) */
| (temp64 & (0xffLL<<48))>>(5*8) | (temp64 & (0xffLL<< 8))<<(5*8) /* 2 & 7 */
| (temp64 & (0xffLL<<40))>>(3*8) | (temp64 & (0xffLL<<16))<<(3*8) /* 3 & 6 */
| (temp64 & (0xffLL<<32))>>(1*8) | (temp64 & (0xffLL<<24))<<(1*8); /* 4 & 5 */
}
/*****************************************************************************/
/*****************************************************************************/
/* EOF */

View File

@ -79,6 +79,8 @@ void hmac_sha256(void* dest, void* key, uint16_t kl, void* msg, uint64_t ml){ /*
uint8_t i;
uint8_t buffer[SHA256_BLOCK_BITS/8];
memset(buffer, 0, SHA256_BLOCK_BITS/8);
/* if key is larger than a block we have to hash it*/
if (kl > SHA256_BLOCK_BITS){
sha256((void*)buffer, key, kl);
@ -101,9 +103,9 @@ void hmac_sha256(void* dest, void* key, uint16_t kl, void* msg, uint64_t ml){ /*
for (i=0; i<SHA256_BLOCK_BITS/8; ++i){
buffer[i] ^= IPAD ^ OPAD;
}
sha265_ctx2hash(dest, &s); /* save inner hash temporary to dest */
sha256_ctx2hash(dest, &s); /* save inner hash temporary to dest */
sha256_init(&s);
sha256_nextBlock(&s, buffer);
sha256_lastBlock(&s, dest, SHA256_HASH_BITS);
sha265_ctx2hash(dest, &s);
sha256_ctx2hash(dest, &s);
}

17
hmac-sha256.h Normal file
View File

@ -0,0 +1,17 @@
#ifndef HMACSHA256_H_
#define HMACSHA256_H_
#include "sha256.h"
#define HMAC_BITS SHA256_HASH_BITS
#define HMAC_BYTES (HMAC_BITS/8)
typedef sha256_ctx_t hmac_sha256_ctx_t;
void hmac_sha256_init(hmac_sha256_ctx_t *s, void* key, uint16_t kl);
void hmac_sha256_final(hmac_sha256_ctx_t *s, void* key, uint16_t kl);
void hmac_sha256(void* dest, void* key, uint16_t kl, void* msg, uint64_t ml);
#endif /*HMACSHA256_H_*/

233
main-camellia-test.c Normal file
View File

@ -0,0 +1,233 @@
/*
* camellia test-suit
*
*/
#include "config.h"
#include "serial-tools.h"
#include "uart.h"
#include "debug.h"
#include "camellia.h"
#include <stdint.h>
#include <string.h>
#include <avr/pgmspace.h>
#ifndef BOOL
#define BOOL
#ifndef __BOOL
#define __BOOL
#ifndef __BOOL__
#define __BOOL__
typedef enum{false=0,true=1} bool;
#endif
#endif
#endif
/*****************************************************************************
* additional validation-functions *
*****************************************************************************/
/*****************************************************************************
* self tests *
*****************************************************************************/
void camellia128_ctx_dump(camellia128_ctx_t *s);
void test_encrypt(uint8_t *block, uint8_t *key, uint16_t keylength, bool print){
camellia128_ctx_t s;
if (print){
uart_putstr("\r\nCamellia (enc):\r\n key:\t\t");
uart_hexdump(key, keylength/8);
uart_putstr("\r\n plaintext:\t");
uart_hexdump(block, 16);
}
camellia128_init(&s, key);;
camellia128_enc(&s, block);
if (print){
uart_putstr("\r\n ciphertext:\t");
uart_hexdump(block, 16);
}
}
void test_decrypt(uint8_t *block, uint8_t *key, uint16_t keylength, bool print){
camellia128_ctx_t s;
if (print){
uart_putstr("\r\nCamellia (dec):\r\n key:\t\t");
uart_hexdump(key, keylength/8);
uart_putstr("\r\n ciphertext:\t");
uart_hexdump(block, 16);
}
camellia128_init(&s, key);
camellia128_dec(&s, block);
if (print){
uart_putstr("\r\n plaintext:\t");
uart_hexdump(block, 16);
}
}
void nessie_test_iterate(uint8_t *block, uint8_t *key){
uint16_t i;
test_encrypt(block, key, 128, true);
test_decrypt(block, key, 128, true);
uart_putstr("\r\n100 times:");
for(i=0; i<99; ++i){
test_encrypt(block, key, 128, false);
}
test_encrypt(block, key, 128, true);
uart_putstr("\r\n1000 times:");
for(i=0; i<(999-100); ++i){
test_encrypt(block, key, 128, false);
}
test_encrypt(block, key, 128, true);
}
void nessie_test_iterate_inv(uint8_t *block, uint8_t *key){
uint16_t i;
test_decrypt(block, key, 128, true);
test_encrypt(block, key, 128, true);
uart_putstr("\r\n100 times:");
for(i=0; i<99; ++i){
test_decrypt(block, key, 128, false);
}
test_encrypt(block, key, 128, true);
uart_putstr("\r\n1000 times:");
for(i=0; i<(999-100); ++i){
test_decrypt(block, key, 128, false);
}
test_decrypt(block, key, 128, true);
}
prog_uint8_t ntt_test_values_in[16] = {
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10
};
prog_uint8_t ntt_test_values_out[16] = {
0x67, 0x67, 0x31, 0x38, 0x54, 0x96, 0x69, 0x73,
0x08, 0x57, 0x06, 0x56, 0x48, 0xea, 0xbe, 0x43
};
int memcmp_P(const void *s1, PGM_P s2, size_t n){
uint8_t b;
while(n--){
b = pgm_read_byte_near(s2);
if( *((uint8_t*)s1) != b)
return(*((uint8_t*)s1)-b);
++s1; ++s2;
}
return 0;
}
void testrun_camellia(void){
/* we run the NESSIE test for Camellia here see
* https://www.cosic.esat.kuleuven.be/nessie/testvectors/bc/camellia/Camellia-128-128.verified.test-vectors
* for the vectors
*/
unsigned j, setn;
uint8_t block[16];
uint8_t key[16];
memcpy_P(block, ntt_test_values_in, 16);
memcpy_P(key, ntt_test_values_in, 16);
test_encrypt(block, key, 128, true);
if(memcmp_P(block, ntt_test_values_out, 16)){
uart_putstr("\t[FAILED]\r\n");
return;
}
uart_putstr("\t[OK]");
test_decrypt(block, key, 128, true);
if(memcmp_P(block, ntt_test_values_in, 16)){
uart_putstr("\t[FAILED]\r\n");
return;
}
uart_putstr("\t[OK]");
/* test set #1 & #2 */
setn=1;
for(setn=1; setn<=2; ++setn){
for(j=0; j<128; ++j){
uart_putstr("\r\n\r\n### SET: ");
uart_hexdump(&setn,1);
uart_putstr(" Vector: ");
uart_hexdump(&j,1);
memset(block, 0, 16);
memset(key, 0, 16);
((setn&0x1)?key:block)[j>>3] = 1<<(((~j)&0x7));
nessie_test_iterate(block, key);
}
}
/* test set #3 */
for(j=0; j<256; ++j){
uart_putstr("\r\n### SET: ");
uart_hexdump(&setn,1);
uart_putstr(" Vector: ");
uart_hexdump(&j,1);
memset(block, j, 16);
memset(key, 0, 16);
nessie_test_iterate(block, key);
}
setn++;
/* test set #4 (some strange values*/
setn++;
/* test ser #5 & #6 (same as 1&2 but enc and dec exchanged)*/
for(setn=5; setn<=6; ++setn){
for(j=0; j<128; ++j){
uart_putstr("\r\n\r\n### SET: ");
uart_hexdump(&setn,1);
uart_putstr(" Vector: ");
uart_hexdump(&j,1);
memset(block, 0, 16);
memset(key, 0, 16);
((setn&0x1)?key:block)[j>>3] = 1<<(((~j)&0x7));
nessie_test_iterate_inv(block, key);
}
}
/* test set #7 */
for(j=0; j<256; ++j){
uart_putstr("\r\n### SET: ");
uart_hexdump(&setn,1);
uart_putstr(" Vector: ");
uart_hexdump(&j,1);
memset(block, j, 16);
memset(key, 0, 16);
nessie_test_iterate_inv(block, key);
}
setn++;
/* test set #4 (some strange values*/
setn++;
}
/*****************************************************************************
* main *
*****************************************************************************/
int main (void){
char str[20];
DEBUG_INIT();
uart_putstr("\r\n");
uart_putstr("\r\n\r\nCrypto-VS (Camellia)\r\nloaded and running\r\n");
restart:
while(1){
if (!getnextwordn(str,20)) {DEBUG_S("DBG: W1\r\n"); goto error;}
if (strcmp(str, "test")) {DEBUG_S("DBG: 1b\r\n"); goto error;}
testrun_camellia();
goto restart;
continue;
error:
uart_putstr("ERROR\r\n");
} /* while (1) */
}

81
main-md5-test.c Normal file
View File

@ -0,0 +1,81 @@
/*
* md5 test suit
*
*/
#include "config.h"
#include "serial-tools.h"
#include "uart.h"
#include "debug.h"
#include "md5.h"
#include <stdint.h>
#include <string.h>
/*****************************************************************************
* additional validation-functions *
*****************************************************************************/
/*****************************************************************************
* self tests *
*****************************************************************************/
/*
* MD5 test suite:
* MD5 ("") = d41d8cd98f00b204e9800998ecf8427e
* MD5 ("a") = 0cc175b9c0f1b6a831c399e269772661
* MD5 ("abc") = 900150983cd24fb0d6963f7d28e17f72
* MD5 ("message digest") = f96b697d7cb7938d525a2f31aaf161d0
* MD5 ("abcdefghijklmnopqrstuvwxyz") = c3fcd3d76192e4007dfb496cca67e13b
* MD5 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789") =
* d174ab98d277d9f5a5611c2c9f419d9f
* MD5 ("123456789012345678901234567890123456789012345678901234567890123456
* 78901234567890") = 57edf4a22be3c955ac49da2e2107b67a
*/
void testrun_md5(void){
md5_ctx_t s;
char* testv[]={"", "a", "abc", "message digest", "abcdefghijklmnopqrstuvwxyz",
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
"12345678901234567890123456789012345678901234567890123456789012345678901234567890"};
uint8_t i;
uart_putstr("\r\n=== MD5 test suit ===");
for(i=0; i<7; ++i){
uart_putstr("\r\n MD5 (\"");
uart_putstr(testv[i]);
uart_putstr("\") = \r\n");
md5_init(&s);
md5_lastBlock(&s, testv[i], strlen(testv[i])*8);
uart_hexdump(&s.a[0], 16);
}
}
/*****************************************************************************
* main *
*****************************************************************************/
int main (void){
char str[20];
DEBUG_INIT();
uart_putstr("\r\n");
uart_putstr("\r\n\r\nCrypto-VS (MD5)\r\nloaded and running\r\n");
restart:
while(1){
if (!getnextwordn(str,20)) {DEBUG_S("DBG: W1\r\n"); goto error;}
if (strcmp(str, "test")) {DEBUG_S("DBG: 1b\r\n"); goto error;}
testrun_md5();
goto restart;
continue;
error:
uart_putstr("ERROR\r\n");
} /* while (1) */
}