/* salsa20.c */ /* This file is part of the AVR-Crypto-Lib. Copyright (C) 2006-2015 Daniel Otte (bg@nerilex.org) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include "salsa20.h" #define ROTL32(a,n) (((a)<<(n))|((a)>>(32-(n)))) static void quaterround(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d){ *b ^= ROTL32(*a + *d, 7); *c ^= ROTL32(*b + *a, 9); *d ^= ROTL32(*c + *b, 13); *a ^= ROTL32(*d + *c, 18); } static void rowround(uint32_t *a){ quaterround(a+ 0, a+ 1, a+ 2, a+ 3); quaterround(a+ 5, a+ 6, a+ 7, a+ 4); quaterround(a+10, a+11, a+ 8, a+ 9); quaterround(a+15, a+12, a+13, a+14); } static void columnround(uint32_t *a){ quaterround(a+ 0, a+ 4, a+ 8, a+12); quaterround(a+ 5, a+ 9, a+13, a+ 1); quaterround(a+10, a+14, a+ 2, a+ 6); quaterround(a+15, a+ 3, a+ 7, a+11); } static void doubleround(uint32_t *a){ columnround(a); rowround(a); } void salsa20_hash(uint32_t *a){ uint8_t i; uint32_t b[16]; memcpy(b, a, 64); for(i=0; i<10; ++i){ doubleround(a); } for(i=0; i<16; ++i){ a[i] += b[i]; } } const uint8_t sigma[] PROGMEM = {'e','x','p','a','n','d',' ','3','2','-','b','y','t','e',' ','k'}; const uint8_t theta[] PROGMEM = {'e','x','p','a','n','d',' ','1','6','-','b','y','t','e',' ','k'}; void salsa_k32(uint32_t *dest, const uint32_t *k, const uint32_t *n){ memcpy_P(dest+ 0, sigma+ 0, 4); memcpy( dest+ 4, k+ 0, 16); memcpy_P(dest+20, sigma+ 4, 4); memcpy( dest+24, n+ 0, 16); memcpy_P(dest+40, sigma+ 8, 4); memcpy( dest+44, k+16, 16); memcpy_P(dest+60, sigma+12, 4); salsa20_hash(dest); } void salsa_k16(uint32_t *dest, const uint32_t *k, const uint32_t *n){ memcpy_P(dest+ 0, theta+ 0, 4); memcpy( dest+ 4, k+ 0, 16); memcpy_P(dest+20, theta+ 4, 4); memcpy( dest+24, n+ 0, 16); memcpy_P(dest+40, theta+ 8, 4); memcpy( dest+44, k+ 0, 16); memcpy_P(dest+60, theta+12, 4); salsa20_hash(dest); } void salsa20_genBlock256(void *dest, const void *k, const void *iv, uint64_t i){ uint32_t n[4]; memcpy(n, iv, 8); memcpy(n+8, &i, 8); salsa_k32((uint32_t*)dest, (uint32_t*)k, n); } void salsa20_genBlock128(void *dest, const void *k, const void *iv, uint64_t i){ uint32_t n[4]; memcpy(n, iv, 8); memcpy(n+8, &i, 8); salsa_k16((uint32_t*)dest, (uint32_t*)k, n); } void salsa20_init(void *key, uint16_t keylength_b, void *iv, salsa20_ctx_t *ctx){ if(keylength_b==256){ memcpy_P((ctx->a.v8+ 0), sigma+ 0, 4); memcpy_P((ctx->a.v8+20), sigma+ 4, 4); memcpy_P((ctx->a.v8+40), sigma+ 8, 4); memcpy( (ctx->a.v8+44), (uint8_t*)key+16, 16); memcpy_P((ctx->a.v8+60), sigma+12, 4); }else{ memcpy_P((ctx->a.v8+ 0), theta+ 0, 4); memcpy_P((ctx->a.v8+20), theta+ 4, 4); memcpy_P((ctx->a.v8+40), theta+ 8, 4); memcpy( (ctx->a.v8+44), (uint8_t*)key+ 0, 16); memcpy_P((ctx->a.v8+60), theta+12, 4); } memcpy( (ctx->a.v8+ 4), key, 16); memset( (ctx->a.v8+24), 0, 16); if(iv){ memcpy( (ctx->a.v8+24), iv, 8); } ctx->buffer_idx=64; } uint8_t salsa20_gen(salsa20_ctx_t *ctx){ if(ctx->buffer_idx==64){ memcpy(ctx->buffer, ctx->a.v8, 64); salsa20_hash((uint32_t*)(ctx->buffer)); ctx->a.v64[4] += 1; ctx->buffer_idx = 0; } return ctx->buffer[ctx->buffer_idx++]; }