/* serpent.c */ /* This file is part of the AVR-Crypto-Lib. Copyright (C) 2006-2015 Daniel Otte (bg@nerilex.org) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* serpent.c * a bitsliced implementation of the serpent cipher for avr microcontrollers * author: Daniel Otte * email: bg@nerilex.org * license: GPLv3 */ #include #include /* memset() */ #include #include "memxor.h" #include "serpent.h" #include "serpent-sboxes.h" /******************************************************************************/ uint32_t rotl32(uint32_t a, uint8_t n){ return ((a<>(32-n))); } uint32_t rotr32(uint32_t a, uint8_t n){ return ((a>>n) | (a<<(32-n))); } #define X0 (((uint32_t*)b)[0]) #define X1 (((uint32_t*)b)[1]) #define X2 (((uint32_t*)b)[2]) #define X3 (((uint32_t*)b)[3]) static void serpent_lt(uint8_t *b){ X0 = rotl32(X0, 13); X2 = rotl32(X2, 3); X1 ^= X0 ^ X2; X3 ^= X2 ^ (X0 << 3); X1 = rotl32(X1, 1); X3 = rotl32(X3, 7); X0 ^= X1 ^ X3; X2 ^= X3 ^ (X1 << 7); X0 = rotl32(X0, 5); X2 = rotr32(X2, 10); } static void serpent_inv_lt(uint8_t *b){ X2 = rotl32(X2, 10); X0 = rotr32(X0, 5); X2 ^= X3 ^ (X1 << 7); X0 ^= X1 ^ X3; X3 = rotr32(X3, 7); X1 = rotr32(X1, 1); X3 ^= X2 ^ (X0 << 3); X1 ^= X0 ^ X2; X2 = rotr32(X2, 3); X0 = rotr32(X0, 13); } #define GOLDEN_RATIO 0x9e3779b9l static uint32_t serpent_gen_w(uint32_t * b, uint8_t i){ uint32_t ret; ret = b[0] ^ b[3] ^ b[5] ^ b[7] ^ GOLDEN_RATIO ^ (uint32_t)i; ret = rotl32(ret, 11); return ret; } void serpent_init(const void *key, uint16_t keysize_b, serpent_ctx_t *ctx){ uint32_t buffer[8]; uint8_t i,j; if(keysize_b<256){ /* keysize is less than 256 bit, padding needed */ memset(buffer, 0, 32); memcpy(buffer, key, (keysize_b+7)/8); ((uint8_t*)buffer)[keysize_b/8] |= 1<<(keysize_b%8); } else { /* keysize is 256 bit */ memcpy(buffer, key, 32); } for(i=0; i<33; ++i){ for(j=0; j<4; ++j){ ctx->k[i][j] = serpent_gen_w(buffer, i*4+j); memmove(buffer, &(buffer[1]), 7*4); /* shift buffer one to the "left" */ buffer[7] = ctx->k[i][j]; } } for(i=0; i<33; ++i){ sbox128(ctx->k[i],3-i); } } void serpent_enc(void *buffer, const serpent_ctx_t *ctx){ uint8_t i; for(i=0; i<31; ++i){ memxor(buffer, ctx->k[i], 16); sbox128(buffer, i); serpent_lt((uint8_t*)buffer); } memxor(buffer, ctx->k[i], 16); sbox128(buffer, i); ++i; memxor(buffer, ctx->k[i], 16); } void serpent_dec(void *buffer, const serpent_ctx_t *ctx){ int8_t i=32; memxor(buffer, ctx->k[i], 16); --i; inv_sbox128(buffer, i); memxor((uint8_t*)buffer, ctx->k[i], 16); --i; for(; i>=0; --i){ serpent_inv_lt(buffer); inv_sbox128(buffer, i); memxor(buffer, ctx->k[i], 16); } }