/* sha256.c */ /* This file is part of the AVR-Crypto-Lib. Copyright (C) 2006-2015 Daniel Otte (bg@nerilex.org) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /** * \file sha256.c * \author Daniel Otte * \date 16.05.2006 * * \par License: * GPL * * \brief SHA-256 implementation. * * */ #include #include /* for memcpy, memmove, memset */ #include #include "sha256.h" #define LITTLE_ENDIAN #if defined LITTLE_ENDIAN #elif defined BIG_ENDIAN #else #error specify endianess!!! #endif /*************************************************************************/ static const uint32_t sha256_init_vector[] PROGMEM = { 0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL, 0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL }; /*************************************************************************/ /** * \brief \c sh256_init initialises a sha256 context for hashing. * \c sh256_init c initialises the given sha256 context for hashing * @param state pointer to a sha256 context * @return none */ void sha256_init(sha256_ctx_t *state){ state->length = 0; memcpy_P(state->h, sha256_init_vector, 8 * 4); } /*************************************************************************/ /** * rotate x right by n positions */ uint32_t rotr32( uint32_t x, uint8_t n){ return ((x >> n) | (x << (32 - n))); } /*************************************************************************/ // #define CHANGE_ENDIAN32(x) (((x)<<24) | ((x)>>24) | (((x)& 0x0000ff00)<<8) | (((x)& 0x00ff0000)>>8)) uint32_t change_endian32(uint32_t x){ return ( ((x) << 24) | ((x) >> 24) | (((x) & 0x0000ff00UL) << 8) | (((x) & 0x00ff0000UL) >> 8) ); } /*************************************************************************/ /* sha256 functions as macros for speed and size, cause they are called only once */ #define CH(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #define SIGMA0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22)) #define SIGMA1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25)) #define SIGMA_a(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3)) #define SIGMA_b(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10)) static const uint32_t k[] PROGMEM = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; /*************************************************************************/ /** * block must be 512 Bit = 64 Byte long !!! */ void sha256_nextBlock (sha256_ctx_t *state, const void *block){ uint32_t w[16]; /* this is 64 Byte large, */ uint8_t i; uint32_t a[8], t1, t2; /* init working variables */ memcpy((void*)a,(void*)(state->h), 8 * 4); /* init w */ #if defined LITTLE_ENDIAN for (i = 0; i < 16; ++i) { w[i] = change_endian32(((uint32_t*)block)[i]); } #elif defined BIG_ENDIAN memcpy((void*)w, block, 64); #endif /* for (i = 16; i < 64; ++i) { w[i] = SIGMA_b(w[i - 2]) + w[i - 7] + SIGMA_a(w[i - 15]) + w[i - 16]; } */ /* do the, fun stuff, */ for (i=0; i<64; ++i) { if (i > 15) { w[i % 16] = SIGMA_b(w[(i + 14) % 16]) + w[(i + 9) % 16] + SIGMA_a(w[(i + 1) % 16]) + w[i % 16]; } t1 = a[7] + SIGMA1(a[4]) + CH(a[4], a[5], a[6]) + pgm_read_dword(&k[i]) + w[i % 16]; t2 = SIGMA0(a[0]) + MAJ(a[0], a[1], a[2]); memmove(&(a[1]), &(a[0]), 7 * 4); /* a[7]=a[6]; a[6]=a[5]; a[5]=a[4]; a[4]=a[3]; a[3]=a[2]; a[2]=a[1]; a[1]=a[0]; */ a[4] += t1; a[0] = t1 + t2; } /* update, the, state, */ for (i = 0; i < 8; ++i){ state->h[i] += a[i]; } state->length += 1; } /*************************************************************************/ /** * \brief function to process the last block being hashed * @param state Pointer to the context in which this block should be processed. * @param block Pointer to the message wich should be hashed. * @param length is the length of only THIS block in BITS not in bytes! * bits are big endian, meaning high bits come first. * if you have a message with bits at the end, the byte must be padded with zeros */ void sha256_lastBlock(sha256_ctx_t *state, const void *block, uint16_t length){ uint8_t lb[SHA256_BLOCK_BITS / 8]; /* local block */ uint64_t msg_len; while(length>=SHA256_BLOCK_BITS){ sha256_nextBlock(state, block); length -= SHA256_BLOCK_BITS; block = (uint8_t*)block + SHA256_BLOCK_BYTES; } msg_len = state->length; msg_len *= 512; msg_len += length; memcpy (&(lb[0]), block, length / 8); /* set the final one bit */ if (length & 7){ // if we have single bits at the end lb[length / 8] = ((uint8_t*)(block))[length / 8]; } else { lb[length / 8] = 0; } lb[length / 8] |= 0x80 >> (length & 7); length = (length / 8) + 1; /* from now on length contains the number of BYTES in lb*/ /* pad with zeros */ if (length > 64 - 8){ /* not enouth space for 64bit length value */ memset((void*)(&(lb[length])), 0, 64 - length); sha256_nextBlock(state, lb); length = 0; } memset((void*)(&(lb[length])), 0, 56 - length); /* store the 64bit length value */ #if defined LITTLE_ENDIAN /* this is now rolled up */ uint8_t i = 7; do { lb[56 + i] = msg_len & 0xff; msg_len >>= 8; } while (i--); #elif defined BIG_ENDIAN *((uint64_t)&(lb[56])) = state->length; #endif sha256_nextBlock(state, lb); } /*************************************************************************/ /* * length in bits! */ void sha256(sha256_hash_t *dest, const void *msg, uint32_t length){ /* length could be choosen longer but this is for µC */ sha256_ctx_t s; sha256_init(&s); while(length >= SHA256_BLOCK_BITS){ sha256_nextBlock(&s, msg); msg = (uint8_t*)msg + SHA256_BLOCK_BITS/8; length -= SHA256_BLOCK_BITS; } sha256_lastBlock(&s, msg, length); sha256_ctx2hash(dest,&s); } /*************************************************************************/ void sha256_ctx2hash(sha256_hash_t *dest, const sha256_ctx_t *state){ #if defined LITTLE_ENDIAN uint8_t i; for(i = 0; i < 8; ++i){ ((uint32_t*)dest)[i] = change_endian32(state->h[i]); } #elif BIG_ENDIAN if (dest != state->h) memcpy(dest, state->h, SHA256_HASH_BITS/8); #else # error unsupported endian type! #endif }