/* A5_1.c */ /* This file is part of the AVR-Crypto-Lib. Copyright (C) 2006-2015 Daniel Otte (bg@nerilex.org) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * File: A5_1.c * Author: Daniel Otte * email: bg@nerilex.org * Date: 2006-06-24 * License: GPLv3 or later * Description: Implementation of the A5/1 stream cipher algorithm, as used in GSM. * ! Warning, this is weak crypto ! * */ #include #include #include "A5_1.h" #include uint8_t a5_1_clock_core(a5_1_ctx_t *c, uint8_t clockoverride); /* * length is length of key in bits! */ void a5_1_init(a5_1_ctx_t *c, void *key, uint8_t keylength_b, void *iv, uint8_t ivlength_b) { uint8_t i, t; memset(c->r1, 0, 3); memset(c->r2, 0, 3); memset(c->r3, 0, 3); for (i = 0; i < keylength_b; ++i) { t = ((uint8_t*) key)[i / 8]; t = 1 & (t >> i); c->r1[0] ^= t; c->r2[0] ^= t; c->r3[0] ^= t; a5_1_clock_core(c, 0x7); } for (i = 0; i < ivlength_b; ++i) { t = ((uint8_t*) iv)[i / 8]; t = 1 & (t >> i); c->r1[0] ^= t; c->r2[0] ^= t; c->r3[0] ^= t; a5_1_clock_core(c, 0x7); } for (i = 0; i < 100; ++i) a5_1_clock_core(c, 0); } static void shiftreg(uint8_t *d) { uint8_t c, c2; c = d[0] >> 7; d[0] <<= 1; c2 = d[1] >> 7; d[1] = (d[1] << 1) | c; d[2] = (d[2] << 1) | c2; } const uint8_t parity3_lut[] PROGMEM = { 0, 1, 1, 0, 1, 0, 0, 1 }; const uint8_t clock_lut[] PROGMEM = { 0x7, 0x6, 0x5, 0x3, 0x3, 0x5, 0x6, 0x7 }; uint8_t a5_1_clock_core(a5_1_ctx_t *c, uint8_t clockoverride) { uint8_t ret, clk, fb; ret = (0x04 & c->r1[2]) | (0x20 & c->r2[2]) | (0x40 & c->r3[2]); ret = ret ^ (ret >> 6); ret &= 0x7; ret = pgm_read_byte(parity3_lut + ret); clk = (0x08 & c->r1[1]) | (0x10 & c->r2[1]) | (0x20 & c->r3[1]); clk >>= 3; clk = pgm_read_byte(clock_lut + clk); clk |= clockoverride; if (clk & 1) { fb = c->r1[2] ^ (1 & ((c->r1[1]) >> 5)); fb &= 0x7; fb = pgm_read_byte(parity3_lut + fb); shiftreg(c->r1); c->r1[0] |= fb; c->r1[2] &= 0x07; } clk >>= 1; if (clk & 1) { fb = c->r2[2] >> 4; fb &= 0x7; fb = pgm_read_byte(parity3_lut + fb); shiftreg(c->r2); c->r2[0] |= fb; c->r2[2] &= 0x3F; } clk >>= 1; if (clk & 1) { fb = (c->r3[2] >> 4) ^ (1 & ((c->r3[0]) >> 7)); fb &= 0x7; fb = pgm_read_byte(parity3_lut + fb); shiftreg(c->r3); c->r3[0] |= fb; c->r3[2] &= 0x7F; } return ret; } uint8_t a5_1_clock(a5_1_ctx_t *c) { return a5_1_clock_core(c, 0); } uint8_t a5_1_gen(a5_1_ctx_t *c) { uint8_t ret = 0; ret = a5_1_clock(c); ret <<= 1; ret = a5_1_clock(c); ret <<= 1; ret = a5_1_clock(c); ret <<= 1; ret = a5_1_clock(c); ret <<= 1; ret = a5_1_clock(c); ret <<= 1; ret = a5_1_clock(c); ret <<= 1; ret = a5_1_clock(c); ret <<= 1; ret = a5_1_clock(c); return ret; }