/* main-dsa-test.c */ /* This file is part of the AVR-Crypto-Lib. Copyright (C) 2010 Daniel Otte (daniel.otte@rub.de) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * ECDSA test-suit * */ #include "main-test-common.h" #include "noekeon.h" #include "noekeon_prng.h" #include "bigint.h" #include "bigint_io.h" #include "nist_p192.h" #include "ecc.h" #include "ecdsa_sign.h" #include "hfal_sha1.h" #include "hfal_sha224.h" #include "hfal_sha256.h" #include "hfal_sha384.h" #include "hfal_sha512.h" #include "performance_test.h" #include "hfal_sha1.h" #include "base64_enc.h" #include "base64_dec.h" char* algo_name = "ECDSA"; /***************************************************************************** * additional validation-functions * *****************************************************************************/ uint8_t prng_get_byte(void){ return random8(); } void testrun_performance_invert_bigint(void){ printf_P(PSTR("\n=== performance measurement (invert) ===\n")); unsigned i,j; uint64_t time = 0; bigint_t a, v; bigint_word_t v_w[192 / BIGINT_WORD_SIZE]; bigint_word_t a_w[192 / BIGINT_WORD_SIZE]; a.wordv = a_w; v.wordv = v_w; for(j = 0; j < 32; ++j){ for(i = 0; i < 192 / BIGINT_WORD_SIZE; ++i){ ((uint8_t*)v_w)[i] = random(); } v.length_W = 192 / BIGINT_WORD_SIZE; v.info = 0; bigint_adjust(&v); for(i = 0; i < 16; ++i){ startTimer(1); START_TIMER; bigint_inverse(&a, &v, &nist_curve_p192_p); STOP_TIMER; time += stopTimer(); } } time >>= 8; ++time; time >>= 1; printf_P(PSTR(" invert costs %"PRIu32" cycles\n"), (uint32_t)time); } void testrun_performance_multiply_bigint(void){ printf_P(PSTR("\n=== performance measurement (invert) ===\n")); unsigned i,j; uint64_t time_a = 0, time_b = 0; uint32_t tmp; bigint_t a, b, v; bigint_word_t v_w[192 * 2 / BIGINT_WORD_SIZE]; bigint_word_t a_w[192 / BIGINT_WORD_SIZE]; bigint_word_t b_w[192 / BIGINT_WORD_SIZE]; a.wordv = a_w; b.wordv = b_w; v.wordv = v_w; for(j = 0; j < 32; ++j){ for(i = 0; i < 192 / BIGINT_WORD_SIZE; ++i){ ((uint8_t*)a_w)[i] = random(); } a.length_W = 192 / BIGINT_WORD_SIZE; a.info = 0; bigint_adjust(&a); for(i = 0; i < 192 / BIGINT_WORD_SIZE; ++i){ ((uint8_t*)b_w)[i] = random(); } b.length_W = 192 / BIGINT_WORD_SIZE; b.info = 0; bigint_adjust(&b); for(i = 0; i < 16; ++i){ startTimer(1); START_TIMER; bigint_mul_u(&v,&a, &b); STOP_TIMER; tmp = stopTimer(); time_a += tmp; time_b += tmp; START_TIMER; bigint_reduce_p192(&v); STOP_TIMER; tmp = stopTimer(); time_b += tmp; } } time_a >>= 8; ++time_a; time_a >>= 1; time_b >>= 8; ++time_b; time_b >>= 1; printf_P(PSTR(" multiply costs %7"PRIu32" cycles\n"), (uint32_t)time_a); printf_P(PSTR(" multiply + reduce costs %7"PRIu32" cycles\n"), (uint32_t)time_b); } void testrun_performance_reduce_bigint(void){ printf_P(PSTR("\n=== performance measurement (reduce) ===\n")); unsigned i, j; bigint_t a,b,v; bigint_word_t v_w[192 * 2 / BIGINT_WORD_SIZE]; bigint_word_t a_w[192 * 2 / BIGINT_WORD_SIZE]; bigint_word_t b_w[192 * 2 / BIGINT_WORD_SIZE]; uint32_t time_a, time_b; int32_t time_diff; int16_t faster_percent; v.wordv = v_w; for(j = 0; j < 32; ++j){ do{ for(i = 0; i < 192 * 2 / BIGINT_WORD_SIZE; ++i){ ((uint8_t*)v_w)[i] = random(); } v.length_W = 192 * 2 / BIGINT_WORD_SIZE; v.info = 0; bigint_adjust(&v); }while(0); // printf_P(PSTR("candidate:\n")); // bigint_print_hex(&v); a.wordv = a_w; b.wordv = b_w; calibrateTimer(); // printf_P(PSTR("\n going to test optimized version: ...\n")); uart0_flush(); time_a = 0; for(i = 0; i < 16; ++i){ bigint_copy(&a, &v); startTimer(1); START_TIMER; bigint_reduce_p192(&a); STOP_TIMER; time_a += stopTimer(); } // printf_P(PSTR(" took: %"PRIu32" cycles\nresult:"), time); // bigint_print_hex(&a); // printf_P(PSTR("\n going to test not-optimized version: ...\n")); // uart0_flush(); time_b = 0; for(i = 0; i < 16; ++i){ bigint_copy(&b, &v); startTimer(1); START_TIMER; bigint_reduce(&b, &nist_curve_p192_p); STOP_TIMER; time_b += stopTimer(); } // printf_P(PSTR(" took: %"PRIu32" cycles\nresult:"), time); // bigint_print_hex(&b); time_diff = time_b - time_a; faster_percent = (time_diff * 100) / time_b; printf_P(PSTR(" delta: %7"PRId32" (%3"PRId16"%%) :-"), time_diff, faster_percent); if(bigint_cmp_u(&a, &b)){ printf_P(PSTR("(\n")); } else { printf_P(PSTR(")\n")); } uart0_flush(); } } uint8_t ecc_affine_point_alloc(ecc_affine_point_t *p, uint16_t length_b){ size_t len = (length_b + BIGINT_WORD_SIZE - 1)/ BIGINT_WORD_SIZE; if (! (p->x.wordv = malloc(len))){ return 1; } if (! (p->y.wordv = malloc(len))){ free(p->x.wordv); return 2; } return 0; } void ecc_affine_point_free(ecc_affine_point_t *p){ free(p->x.wordv); free(p->y.wordv); } void testrun_square(void){ bigint_word_t a_w[] = { 0x82, 0x6f, 0x79, 0x39, 0x47, 0x06, 0x26, 0x9f, 0x4b, 0xe2, 0x15, 0x61, 0x6f, 0xa1, 0xd4, 0x0c, 0x1f, 0x24, 0x3a, 0xd4, 0xc2, 0x6d, 0xe8, 0xb6 }; bigint_word_t b_w[2 * 192 / BIGINT_WORD_SIZE]; bigint_t a, b; a.wordv = a_w; a.length_W = sizeof(a_w); a.info = 7; b.wordv = b_w; b.info = 0; b.length_W = 0; printf_P(PSTR("\n a = ")); bigint_print_hex(&a); bigint_square(&b, &a); printf_P(PSTR("\n a^2 = ")); bigint_print_hex(&b); bigint_reduce_p192(&b); printf_P(PSTR("\n a^2 %% p = ")); bigint_print_hex(&b); putchar('\n'); } #if 1 /* 0: b3cfed2634516540528622e16c396c229e50bbdf773f8423 1: b6e86dc2d43a241f0cd4a16f6115e24b9f26064739796f82 2: 563f557e41731f268f82fe81c8fed959600dd46649ebeeee 3: 5e45169bd87475db886b8a7833bb0845f5b011a7ce0c1766 4: 4abf34c505a73308a804dcefacbd8f7b10b59fa6ac6421a */ uint8_t test_point_x_w[] = { 0x23, 0x84, 0x3f, 0x77, 0xdf, 0xbb, 0x50, 0x9e, 0x22, 0x6c, 0x39, 0x6c, 0xe1, 0x22, 0x86, 0x52, 0x40, 0x65, 0x51, 0x34, 0x26, 0xed, 0xcf, 0xb3 }; uint8_t test_point_y_w[] = { 0x82, 0x6f, 0x79, 0x39, 0x47, 0x06, 0x26, 0x9f, 0x4b, 0xe2, 0x15, 0x61, 0x6f, 0xa1, 0xd4, 0x0c, 0x1f, 0x24, 0x3a, 0xd4, 0xc2, 0x6d, 0xe8, 0xb6 }; uint8_t test_point_z1_w[] = { 0xee, 0xee, 0xeb, 0x49, 0x66, 0xd4, 0x0d, 0x60, 0x59, 0xd9, 0xfe, 0xc8, 0x81, 0xfe, 0x82, 0x8f, 0x26, 0x1f, 0x73, 0x41, 0x7e, 0x55, 0x3f, 0x56 }; uint8_t test_point_z2_w[] = { 0x66, 0x17, 0x0c, 0xce, 0xa7, 0x11, 0xb0, 0xf5, 0x45, 0x08, 0xbb, 0x33, 0x78, 0x8a, 0x6b, 0x88, 0xdb, 0x75, 0x74, 0xd8, 0x9b, 0x16, 0x45, 0x5e }; uint8_t test_point_z3_w[] = { 0x1a, 0x42, 0xc6, 0x6a, 0xfa, 0x59, 0x0b, 0xb1, 0xf7, 0xd8, 0xcb, 0xfa, 0xce, 0x4d, 0x80, 0x8a, 0x30, 0x73, 0x5a, 0x50, 0x4c, 0xf3, 0xab, 0x04 }; ecc_combi_point_t test_point = { .chudnovsky = { .x = { .wordv = test_point_x_w, .length_W = sizeof(test_point_x_w), .info = 7 }, .y = { .wordv = test_point_y_w, .length_W = sizeof(test_point_y_w), .info = 7 }, .z1 = { .wordv = test_point_z1_w, .length_W = sizeof(test_point_z1_w), .info = 6 }, .z2 = { .wordv = test_point_z2_w, .length_W = sizeof(test_point_z2_w), .info = 6 }, .z3 = { .wordv = test_point_z3_w, .length_W = sizeof(test_point_z3_w), .info = 2 } } }; void testrun_genkey2(void){ ecc_chudnovsky_point_t q; ecc_affine_point_t qa; printf_P(PSTR("\n== testing key generation (2) ==\n")); if(ecc_chudnovsky_point_alloc(&q, 192)){ printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__); return; } if(ecc_affine_point_alloc(&qa, 192)){ printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__); return; } ecc_chudnovsky_point_print(&test_point.chudnovsky); ecc_chudnovsky_to_affine_point(&qa, &test_point.chudnovsky, &nist_curve_p192); printf_P(PSTR("\n Qx: ")); bigint_print_hex(&qa.x); printf_P(PSTR("\n Qy: ")); bigint_print_hex(&qa.y); printf_P(PSTR("\n================\n")); ecc_chudnovsky_point_double_sp(&q, &test_point.chudnovsky, &nist_curve_p192); ecc_chudnovsky_point_print(&q); ecc_chudnovsky_to_affine_point(&qa, &q, &nist_curve_p192); printf_P(PSTR("\n Qx: ")); bigint_print_hex(&qa.x); printf_P(PSTR("\n Qy: ")); bigint_print_hex(&qa.y); puts("\n"); } void testrun_genkey1(void){ ecc_chudnovsky_point_t q; ecc_affine_point_t qa; uint8_t k_w[] = { // e5ce89a34adddf25ff3bf1ffe6803f57d0220de3118798ea 0xea, 0x98, 0x87, 0x11, 0xe3, 0x0d, 0x22, 0xd0, 0x57, 0x3f, 0x80, 0xe6, 0xff, 0xf1, 0x3b, 0xff, 0x25, 0xdf, 0xdd, 0x4a, 0xa3, 0x89, 0xce, 0xe5 }; bigint_t k = { .length_W = sizeof(k_w), .wordv = k_w, .info = 7 }; printf_P(PSTR("\n== testing key generation ==\n")); if(ecc_chudnovsky_point_alloc(&q, 192)){ printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__); return; } if(ecc_affine_point_alloc(&qa, 192)){ printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__); return; } printf_P(PSTR(" k: ")); bigint_print_hex(&k); ecc_chudnovsky_multiplication(&q, &k, &nist_curve_p192_basepoint.chudnovsky, &nist_curve_p192); ecc_chudnovsky_to_affine_point(&qa, &q, &nist_curve_p192); printf_P(PSTR("\n Qx: ")); bigint_print_hex(&qa.x); printf_P(PSTR("\n Qy: ")); bigint_print_hex(&qa.y); puts("\n"); } void testrun_genkey3(void){ ecc_chudnovsky_point_t q; ecc_affine_point_t qa; uint8_t k_w[] = { 0xb2, 0x51, 0x97, 0xc3, 0x7c, 0x61, 0xf8, 0x8f, 0x19, 0x91, 0xcc, 0x67, 0xb5, 0x1c, 0x34, 0x23, 0xff, 0x13, 0xad, 0x14, 0x57, 0x43, 0x14, 0x7d }; bigint_t k = { .length_W = sizeof(k_w), .wordv = k_w, .info = 6 }; printf_P(PSTR("\n== testing key generation ==\n")); if(ecc_chudnovsky_point_alloc(&q, 192)){ printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__); return; } if(ecc_affine_point_alloc(&qa, 192)){ printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__); return; } printf_P(PSTR(" k: ")); bigint_print_hex(&k); ecc_chudnovsky_double_and_add(&q, &k, &nist_curve_p192_basepoint.chudnovsky, &nist_curve_p192); ecc_chudnovsky_to_affine_point(&qa, &q, &nist_curve_p192); printf_P(PSTR("\n Qx: ")); bigint_print_hex(&qa.x); printf_P(PSTR("\n Qy: ")); bigint_print_hex(&qa.y); puts("\n"); } void testrun_genkey(void){ ecc_chudnovsky_point_t q; ecc_affine_point_t qa; uint32_t time; bigint_t k; printf_P(PSTR("\n== testing key generation ==\n")); printf_P(PSTR("enter secret key d: ")); bigint_read_hex_echo(&k); putchar('\n'); if(ecc_chudnovsky_point_alloc(&q, 192)){ printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__); return; } if(ecc_affine_point_alloc(&qa, 192)){ ecc_chudnovsky_point_free(&q); printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__); return; } printf_P(PSTR("(naf) k: ")); bigint_print_hex(&k); startTimer(1); START_TIMER; ecc_chudnovsky_naf_multiplication(&q, &k, &nist_curve_p192_basepoint.chudnovsky, &nist_curve_p192); STOP_TIMER; time = stopTimer(); ecc_chudnovsky_to_affine_point(&qa, &q, &nist_curve_p192); printf_P(PSTR("\n Qx: ")); bigint_print_hex(&qa.x); printf_P(PSTR("\n Qy: ")); bigint_print_hex(&qa.y); printf_P(PSTR("\n time: %"PRIu32" cycles\n"), time); printf_P(PSTR("(d&a) k: ")); bigint_print_hex(&k); startTimer(1); START_TIMER; ecc_chudnovsky_double_and_add(&q, &k, &nist_curve_p192_basepoint.chudnovsky, &nist_curve_p192); STOP_TIMER; time = stopTimer(); ecc_chudnovsky_to_affine_point(&qa, &q, &nist_curve_p192); printf_P(PSTR("\n Qx: ")); bigint_print_hex(&qa.x); printf_P(PSTR("\n Qy: ")); bigint_print_hex(&qa.y); printf_P(PSTR("\n time: %"PRIu32" cycles\n"), time); free(k.wordv); ecc_chudnovsky_point_free(&q); ecc_affine_point_free(&qa); } #endif const uint8_t ecdsa_test_1_msg[] PROGMEM = { 0xcf, 0x71, 0xa0, 0xe4, 0xce, 0x59, 0x43, 0x11, 0x77, 0x88, 0x50, 0x87, 0x53, 0x78, 0xd0, 0xee, 0xa3, 0xc0, 0x32, 0xa4, 0xbc, 0xc0, 0xdc, 0x1c, 0xf2, 0x9d, 0x01, 0xb9, 0xc5, 0x10, 0x78, 0x9c, 0xd5, 0x2f, 0xc3, 0x8c, 0x74, 0xe6, 0xa4, 0x27, 0x87, 0xd0, 0xf2, 0x7c, 0xe2, 0x93, 0x20, 0x7a, 0xfd, 0xd0, 0x11, 0x7a, 0xcc, 0x71, 0xb9, 0x16, 0x63, 0x06, 0xce, 0x56, 0xf1, 0xa7, 0xf1, 0xc6, 0x0a, 0x9d, 0x68, 0x7d, 0x12, 0x5e, 0xb0, 0x7e, 0x26, 0xe5, 0x51, 0xdc, 0x14, 0x0e, 0x8a, 0x04, 0xaf, 0xa2, 0xa1, 0x6f, 0x98, 0xb5, 0x1b, 0xa9, 0x18, 0x96, 0xbf, 0x32, 0x0f, 0xd4, 0xd6, 0xf1, 0xa4, 0x4b, 0x46, 0xf3, 0x3d, 0xae, 0x39, 0xcc, 0x24, 0xf0, 0x4a, 0x5d, 0x86, 0x0c, 0xb1, 0x4f, 0x6b, 0x6e, 0x8a, 0x69, 0x73, 0xb4, 0x9f, 0xd2, 0xa7, 0xbc, 0xeb, 0x48, 0xd7, 0x48, 0xf7, 0xeb }; const uint8_t ecdsa_test_1_d[] PROGMEM = { 0xf3, 0xd7, 0x60, 0xd6, 0x75, 0xf2, 0xcc, 0xeb, 0xf0, 0xd2, 0xfd, 0xb3, 0xb9, 0x41, 0x3f, 0xb0, 0xf8, 0x4f, 0x37, 0xd1, 0xb3, 0x37, 0x4f, 0xe1 }; const uint8_t ecdsa_test_1_k[] PROGMEM = { 0x25, 0x5f, 0x68, 0x89, 0xa2, 0x31, 0xbc, 0x57, 0x4d, 0x15, 0xc4, 0x12, 0xfb, 0x56, 0x45, 0x68, 0x83, 0x07, 0xa1, 0x43, 0x70, 0xbc, 0x0a, 0xcb }; void test_sign1(void){ bigint_word_t d_w[sizeof(ecdsa_test_1_d)]; uint8_t msg[sizeof(ecdsa_test_1_msg)]; uint8_t rnd[sizeof(ecdsa_test_1_k)]; bigint_t d; ecc_combi_point_t q; ecdsa_signature_t sign; ecdsa_ctx_t ctx; d.wordv = d_w; memcpy_P(msg, ecdsa_test_1_msg, sizeof(ecdsa_test_1_msg)); memcpy_P(rnd, ecdsa_test_1_k, sizeof(ecdsa_test_1_k)); memcpy_P(d_w, ecdsa_test_1_d, sizeof(ecdsa_test_1_d) * sizeof(bigint_word_t)); d.length_W = sizeof(ecdsa_test_1_d) / sizeof(bigint_word_t); d.info = 0; bigint_adjust(&d); ecc_chudnovsky_point_alloc(&q.chudnovsky, nist_curve_p192_p.length_W * sizeof(bigint_word_t)); ctx.basepoint = &nist_curve_p192_basepoint.chudnovsky; ctx.priv = &d; ctx.curve = &nist_curve_p192; printf("\n d:"); bigint_print_hex(&d); printf_P(PSTR("\n Gx: ")); bigint_print_hex(&nist_curve_p192_basepoint.affine.x); printf_P(PSTR("\n Gy: ")); bigint_print_hex(&nist_curve_p192_basepoint.affine.y); ecc_chudnovsky_multiplication(&q.chudnovsky, &d, &nist_curve_p192_basepoint.chudnovsky, &nist_curve_p192); ecc_chudnovsky_to_affine_point(&q.affine, &q.chudnovsky, &nist_curve_p192); printf_P(PSTR("\n Qx: ")); bigint_print_hex(&q.affine.x); printf_P(PSTR("\n Qy: ")); bigint_print_hex(&q.affine.y); ctx.pub = &q.affine; ecdsa_signature_alloc(&sign, sizeof(ecdsa_test_1_d) * sizeof(bigint_word_t)); ecdsa_sign_message(&sign, msg, sizeof(msg) * 8, &sha1_desc, &ctx, rnd); printf_P(PSTR("\n r: ")); bigint_print_hex(&sign.r); printf_P(PSTR("\n r: ")); bigint_print_hex(&sign.s); ecdsa_signature_free(&sign); ecc_chudnovsky_point_free(&q.chudnovsky); } /***************************************************************************** * main * *****************************************************************************/ const char echo_test_str[] PROGMEM = "echo-test"; const char reset_prng_str[] PROGMEM = "reset-prng"; const char quick_test_str[] PROGMEM = "quick-test"; const char performance_reduce_str[] PROGMEM = "performance_reduce"; const char performance_invert_str[] PROGMEM = "performance_invert"; const char performance_multiply_str[] PROGMEM = "performance_multiply"; const char genkey1_str[] PROGMEM = "genkey1"; const char genkey2_str[] PROGMEM = "genkey2"; const char genkey3_str[] PROGMEM = "genkey3"; const char genkey_str[] PROGMEM = "genkey"; const char testsign1_str[] PROGMEM = "testsign1"; const char square_str[] PROGMEM = "square"; const char echo_str[] PROGMEM = "echo"; const const cmdlist_entry_t cmdlist[] PROGMEM = { // { reset_prng_str, NULL, reset_prng }, // { quick_test_str, NULL, quick_test }, { square_str, NULL, testrun_square }, { genkey_str, NULL, testrun_genkey }, { genkey1_str, NULL, testrun_genkey1 }, { genkey2_str, NULL, testrun_genkey2 }, { genkey3_str, NULL, testrun_genkey3 }, { testsign1_str, NULL, test_sign1 }, { performance_reduce_str, NULL, testrun_performance_reduce_bigint }, { performance_invert_str, NULL, testrun_performance_invert_bigint }, { performance_multiply_str, NULL, testrun_performance_multiply_bigint }, { echo_str, (void*)1, (void_fpt)echo_ctrl }, { NULL, NULL, NULL } }; int main (void){ int8_t r; main_setup(); calibrateTimer(); for(;;){ welcome_msg(algo_name); r = cmd_interface(cmdlist); printf("r = %"PRId8"\n", r); cli_putstr_P(PSTR("\r\nHello!\r\n")); } }