/* bcal-performance.c */ /* This file is part of the AVR-Crypto-Lib. Copyright (C) 2010 Daniel Otte (daniel.otte@rub.de) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * \file bcal-performance.c * \author Daniel Otte * \email daniel.otte@rub.de * \date 2010-02-16 * \license GPLv3 or later * */ #include "bcal-performance.h" #include "keysize_descriptor.h" #include "blockcipher_descriptor.h" #include "performance_test.h" #include "stack_measuring.h" #include "cli.h" #include #include #include #include #define PATTERN_A 0xAA #define PATTERN_B 0x55 static void printvalue(unsigned long v){ char str[20]; int i; ultoa(v, str, 10); for(i=0; i<10-strlen(str); ++i){ cli_putc(' '); } cli_putstr(str); } void bcal_performance(const bcdesc_t* bcd){ bcdesc_t bc; memcpy_P(&bc, bcd, sizeof(bcdesc_t)); uint8_t ctx[bc.ctxsize_B]; uint8_t data[(bc.blocksize_b+7)/8]; uint16_t keysize = get_keysize(bc.valid_keysize_desc); uint8_t key[(keysize+7)/8]; uint64_t t; uint8_t i; if(bc.type!=BCDESC_TYPE_BLOCKCIPHER) return; calibrateTimer(); print_overhead(); cli_putstr_P(PSTR("\r\n\r\n === ")); cli_putstr_P(bc.name); cli_putstr_P(PSTR(" performance === " "\r\n type: blockcipher" "\r\n keysize (bits): ")); printvalue(keysize); cli_putstr_P(PSTR("\r\n ctxsize (bytes): ")); printvalue(bc.ctxsize_B); cli_putstr_P(PSTR("\r\n blocksize (bits): ")); printvalue(bc.blocksize_b); t=0; if(bc.init.init1){ if((bc.flags&BC_INIT_TYPE)==BC_INIT_TYPE_1){ for(i=0; i<32; ++i){ startTimer(0); START_TIMER; (bc.init.init1)(key, &ctx); STOP_TIMER; t += stopTimer(); if(i!=31 && bc.free){ bc.free(&ctx); } } } else { for(i=0; i<32; ++i){ startTimer(0); START_TIMER; (bc.init.init2)(key, keysize, &ctx); STOP_TIMER; t += stopTimer(); if(i!=31 && bc.free){ bc.free(&ctx); } } } t>>=5; cli_putstr_P(PSTR("\r\n init (cycles): ")); printvalue(t); } t=0; for(i=0; i<32; ++i){ startTimer(0); START_TIMER; bc.enc.enc1(data, &ctx); STOP_TIMER; t += stopTimer(); } t>>=5; cli_putstr_P(PSTR("\r\n encrypt (cycles): ")); printvalue(t); t=0; for(i=0; i<32; ++i){ startTimer(0); START_TIMER; bc.dec.dec1(data, &ctx); STOP_TIMER; t += stopTimer(); } t>>=5; cli_putstr_P(PSTR("\r\n decrypt (cycles): ")); printvalue(t); if(bc.free){ bc.free(&ctx); } } void bcal_stacksize(const bcdesc_t* bcd){ bcdesc_t bc; stack_measuring_ctx_t smctx; memcpy_P(&bc, bcd, sizeof(bcdesc_t)); uint8_t ctx[bc.ctxsize_B]; uint8_t data[(bc.blocksize_b+7)/8]; uint16_t keysize = get_keysize(bc.valid_keysize_desc); uint8_t key[(keysize+7)/8]; uint16_t t1, t2; if(bc.type!=BCDESC_TYPE_BLOCKCIPHER) return; cli_putstr_P(PSTR("\r\n\r\n === ")); cli_putstr_P(bc.name); cli_putstr_P(PSTR(" stack-usage === ")); if(bc.init.init1){ if((bc.flags&BC_INIT_TYPE)==BC_INIT_TYPE_1){ cli(); stack_measure_init(&smctx, PATTERN_A); bc.init.init1(&ctx, key); t1 = stack_measure_final(&smctx); stack_measure_init(&smctx, PATTERN_B); bc.init.init1(&ctx, key); t2 = stack_measure_final(&smctx); sei(); } else { cli(); stack_measure_init(&smctx, PATTERN_A); bc.init.init2(&ctx, keysize, key); t1 = stack_measure_final(&smctx); stack_measure_init(&smctx, PATTERN_B); bc.init.init2(&ctx, keysize, key); t2 = stack_measure_final(&smctx); sei(); } t1 = (t1>t2)?t1:t2; cli_putstr_P(PSTR("\r\n init (bytes): ")); printvalue((unsigned long)t1); } cli(); stack_measure_init(&smctx, PATTERN_A); bc.enc.enc1(data, &ctx); t1 = stack_measure_final(&smctx); stack_measure_init(&smctx, PATTERN_B); bc.enc.enc1(data, &ctx); t2 = stack_measure_final(&smctx); sei(); t1 = (t1>t2)?t1:t2; cli_putstr_P(PSTR("\r\n encBlock (bytes): ")); printvalue((unsigned long)t1); cli(); stack_measure_init(&smctx, PATTERN_A); bc.dec.dec1(data, &ctx); t1 = stack_measure_final(&smctx); stack_measure_init(&smctx, PATTERN_B); bc.dec.dec1(data, &ctx); t2 = stack_measure_final(&smctx); sei(); t1 = (t1>t2)?t1:t2; cli_putstr_P(PSTR("\r\n decBlock (bytes): ")); printvalue((unsigned long)t1); if(bc.free){ bc.free(&ctx); } } void bcal_performance_multiple(const bcdesc_t* const* bcd_list){ const bcdesc_t* bcd; for(;;){ bcd = (void*)pgm_read_word(bcd_list); if(!bcd){ cli_putstr_P(PSTR("\r\n\r\n End of performance figures\r\n")); return; } bcal_performance(bcd); bcal_stacksize(bcd); bcd_list = (void*)((uint8_t*)bcd_list + 2); } }