/* md5.c */ /* This file is part of the Crypto-avr-lib/microcrypt-lib. Copyright (C) 2008 Daniel Otte (daniel.otte@rub.de) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * \file md5.c * \author Daniel Otte * \date 31.07.2006 * \par License: * GPL * \brief Implementation of the MD5 hash algorithm as described in RFC 1321 * */ #include "md5.h" #include "md5_sbox.h" #include "uart.h" #include #include #undef DEBUG void md5_init(md5_ctx_t *s){ s->counter = 0; s->a[0] = 0x67452301; s->a[1] = 0xefcdab89; s->a[2] = 0x98badcfe; s->a[3] = 0x10325476; } uint32_t md5_F(uint32_t x, uint32_t y, uint32_t z){ return ((x&y)|((~x)&z)); } uint32_t md5_G(uint32_t x, uint32_t y, uint32_t z){ return ((x&z)|((~z)&y)); } uint32_t md5_H(uint32_t x, uint32_t y, uint32_t z){ return (x^y^z); } uint32_t md5_I(uint32_t x, uint32_t y, uint32_t z){ return (y ^ (x | (~z))); } typedef uint32_t md5_func_t(uint32_t, uint32_t, uint32_t); #define ROTL32(x,n) (((x)<<(n)) | ((x)>>(32-(n)))) void md5_core(uint32_t* a, uint8_t as, void* block, uint8_t k, uint8_t s, uint8_t i, uint8_t fi){ uint32_t t; md5_func_t* funcs[]={md5_F, md5_G, md5_H, md5_I}; as &= 0x3; /* a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */ #ifdef DEBUG char funcc[]={'*', '-', '+', '~'}; uart_putstr("\r\n DBG: md5_core ["); uart_putc(funcc[fi]); uart_hexdump(&as, 1); uart_putc(' '); uart_hexdump(&k, 1); uart_putc(' '); uart_hexdump(&s, 1); uart_putc(' '); uart_hexdump(&i, 1); uart_putc(']'); #endif t = a[as] + funcs[fi](a[(as+1)&3], a[(as+2)&3], a[(as+3)&3]) + ((uint32_t*)block)[k] + md5_T[i] ; a[as]=a[(as+1)&3] + ROTL32(t, s); } void md5_nextBlock(md5_ctx_t *state, void* block){ uint32_t a[4]; uint8_t m,n,i=0; /* this requires other mixed sboxes */ #ifdef DEBUG uart_putstr("\r\n DBG: md5_nextBlock: block:\r\n"); uart_hexdump(block, 16); uart_putstr("\r\n"); uart_hexdump(block+16, 16); uart_putstr("\r\n"); uart_hexdump(block+32, 16); uart_putstr("\r\n"); uart_hexdump(block+48, 16); uart_putstr("\r\n"); #endif a[0]=state->a[0]; a[1]=state->a[1]; a[2]=state->a[2]; a[3]=state->a[3]; /* round 1 */ uint8_t s1t[]={7,12,17,22}; for(m=0;m<4;++m){ for(n=0;n<4;++n){ md5_core(a, 4-n, block, m*4+n, s1t[n],i++,0); } } /* round 2 */ uint8_t s2t[]={5,9,14,20}; for(m=0;m<4;++m){ for(n=0;n<4;++n){ md5_core(a, 4-n, block, (1+m*4+n*5)&0xf, s2t[n],i++,1); } } /* round 3 */ uint8_t s3t[]={4,11,16,23}; for(m=0;m<4;++m){ for(n=0;n<4;++n){ md5_core(a, 4-n, block, (5-m*4+n*3)&0xf, s3t[n],i++,2); } } /* round 4 */ uint8_t s4t[]={6,10,15,21}; for(m=0;m<4;++m){ for(n=0;n<4;++n){ md5_core(a, 4-n, block, (0-m*4+n*7)&0xf, s4t[n],i++,3); } } state->a[0] += a[0]; state->a[1] += a[1]; state->a[2] += a[2]; state->a[3] += a[3]; state->counter++; } void md5_lastBlock(md5_ctx_t *state, void* block, uint16_t length){ uint16_t l; uint8_t b[64]; while (length >= 512){ md5_nextBlock(state, block); length -= 512; block = ((uint8_t*)block) + 512/8; } memset(b, 0, 64); memcpy(b, block, length/8); /* insert padding one */ l=length/8; if(length%8){ uint8_t t; t = ((uint8_t*)block)[l]; t |= (0x80>>(length%8)); b[l]=t; }else{ b[l]=0x80; } /* insert length value */ if(l+sizeof(uint64_t) > 512/8){ md5_nextBlock(state, b); state->counter--; memset(b, 0, 64); } *((uint64_t*)&b[64-sizeof(uint64_t)]) = (state->counter * 512) + length; md5_nextBlock(state, b); }