/* mqq160-sign.c */ /* This file is part of the AVR-Crypto-Lib. Copyright (C) 2010 Danilo Gligoroski, Daniel Otte (daniel.otte@rub.de) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* C code for MQQ160-SIGN suitable for 8-bit smart cards It is supposed that the private key is "engraved" in the ROM of the smart card - thus it is here stored as predefined const arrays in "MQQ160-SIGN-PrivateKey.h" Programmed by Danilo Gligoroski, 18 Mar 2010. */ #include #include #include #include #include #include "memxor.h" #include "mqq160-sign.h" /* This is just for testing purposes. It should be programmed in a more flexible way in the MQQ160-SIGN C Library. */ void mqq_inv_affine_transformation(uint8_t* input_bytes, uint8_t* result, const mqq160_sign_key_t* key); uint8_t mqq_q(uint8_t i, uint8_t b1, uint8_t b2, const mqq160_sign_key_t* key); #if 0 static uint16_t MaskShort[8] = {0x8000, 0x4000, 0x2000, 0x1000, 0x0800, 0x0400, 0x0200, 0x0100}; static uint8_t mqq_q(uint8_t i, uint8_t b1, uint8_t b2, const mqq160_sign_key_t* key){ uint8_t e[9]; uint16_t a[8]; uint8_t result, column, row, k; int8_t j; uint16_t temp; uint8_t *tmp_ptr=key->a; if(i&1){ memcpy_P(e, key->cc1, 9); while(b1){ if(b1&0x80){ memxor_idx_P((uint8_t*)e, tmp_ptr, 9, 9); } tmp_ptr++; b1 <<= 1; } }else{ memcpy_P(e, key->cc2, 9); while(b1){ if(b1&0x80){ memxor_P((uint8_t*)e, tmp_ptr, 9); } tmp_ptr+=9; b1 <<= 1; } } /* So we finished with obtaining e0 .. e7 and e8 */ /* We XOR e[8] with b2 and that will be initial value to transform in order to solve a linear system of equations */ result=b2 ^ e[8]; /* We can look at the bits of e0 .. e7 as a columns of a given matrix. We want to define 8 variables that have the rows of that matrix. The variables need to be 16-bit because we will put into the upper 8 bits the bits of e0 .. e7, and the bits of the variable result will be the Least Significant Bits of a[0] ... a[7]. */ for(j=0; j<8; ++j){ row = 0; for(k=0; k<8; ++k){ row |= (e[k]&0x80)>>(k); e[k]<<=1; } a[j]=(((uint16_t)row)<<8) | (result>>7); result <<= 1; } /* Now we finally realize Gausian elimination */ /* First we apply upper triangular transformation */ for(column=0; column<8; column++) { row=column; while ((a[row] & MaskShort[column]) == 0){ row++; } if(row>column) { temp=a[column]; a[column]=a[row]; a[row]=temp; } for (j=column+1; j<8; j++) if ((a[j]&MaskShort[column]) !=0) a[j] ^= a[column]; } /* Then we eliminate 1s above the main diagonal */ for (column=7; column>0; column--){ for (j=column-1; j>=0; j--){ if ((a[j]&MaskShort[column]) !=0){ a[j] ^= a[column]; } } } /* The result is in the Least Significant Bits of a[0] ... a[7] */ result = 0; for(j=0; j<8; ++j){ result <<=1; result |= a[j]&1; } return(result); } #endif void mqq160_sign_P(void* dest, const void* hash, const mqq160_sign_key_t* key_P){ uint8_t i, r1[20], byteindex; mqq160_sign_key_t key; memcpy_P(&key, key_P, sizeof(mqq160_sign_key_t)); mqq_inv_affine_transformation((uint8_t*)hash, (uint8_t*)dest, &key); r1[0]=((uint8_t*)dest)[0]; for(i=1; i<20; ++i){ r1[i] = mqq_q(i, r1[i-1], ((uint8_t*)dest)[i], &key); } /* Affine transformation is just for the second call. The constant is extracted from the 4 LSBs of the first 40 bytes of RP5[] and xor-ed to input_bytes[]. */ byteindex = 0; for (i=0; i<20; i++){ r1[i] ^= (uint8_t)(pgm_read_byte(key.rp5+byteindex)<<4) | (uint8_t)(pgm_read_byte(key.rp5+byteindex+1)&0x0F); byteindex += 2; } mqq_inv_affine_transformation(r1, (uint8_t*)dest, &key); }