avr-crypto-lib/bcal/bcal-cmac.c

162 lines
4.8 KiB
C

/* bcal-omac.c */
/*
This file is part of the AVR-Crypto-Lib.
Copyright (C) 2006-2015 Daniel Otte (bg@nerilex.org)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <string.h>
#include "bcal-basic.h"
#include "bcal-cmac.h"
#include "memxor.h"
static uint8_t left_shift_be_block(void *block, uint8_t blocksize_B)
{
uint8_t c1 = 0, c2;
do {
--blocksize_B;
c2 = (((uint8_t*) block)[blocksize_B]) >> 7;
(((uint8_t*) block)[blocksize_B]) <<= 1;
(((uint8_t*) block)[blocksize_B]) |= c1;
c1 = c2;
} while (blocksize_B);
return c1;
}
static const uint8_t const_128 = 0x87;
static const uint8_t const_64 = 0x1b;
uint8_t bcal_cmac_init(const bcdesc_t *desc, const void *key,
uint16_t keysize_b, bcal_cmac_ctx_t *ctx)
{
uint8_t r;
ctx->desc = (bcdesc_t*) desc;
ctx->blocksize_B = bcal_cipher_getBlocksize_b(desc) / 8;
if (ctx->blocksize_B != 128 / 8 && ctx->blocksize_B != 64 / 8) {
return 0x13;
}
ctx->accu = malloc(ctx->blocksize_B);
if (ctx->accu == NULL) {
return 0x14;
}
ctx->k1 = malloc(ctx->blocksize_B);
if (ctx->k1 == NULL) {
return 0x15;
}
ctx->k2 = malloc(ctx->blocksize_B);
if (ctx->k2 == NULL) {
return 0x16;
}
ctx->lastblock = malloc(ctx->blocksize_B);
if (ctx->lastblock == NULL) {
return 0x17;
}
r = bcal_cipher_init(desc, key, keysize_b, &(ctx->cctx));
if (r) {
return r;
}
if (ctx->blocksize_B == 128 / 8) {
r = const_128;
} else {
r = const_64;
}
/* subkey computation */
memset(ctx->accu, 0x00, ctx->blocksize_B);
memset(ctx->k1, 0x00, ctx->blocksize_B);
bcal_cipher_enc(ctx->k1, &(ctx->cctx));
if (left_shift_be_block(ctx->k1, ctx->blocksize_B)) {
ctx->k1[ctx->blocksize_B - 1] ^= r;
}
memcpy(ctx->k2, ctx->k1, ctx->blocksize_B);
if (left_shift_be_block(ctx->k2, ctx->blocksize_B)) {
ctx->k2[ctx->blocksize_B - 1] ^= r;
}
ctx->last_set = 0;
return 0;
}
void bcal_cmac_free(bcal_cmac_ctx_t *ctx)
{
free(ctx->accu);
free(ctx->k1);
free(ctx->k2);
bcal_cipher_free(&(ctx->cctx));
}
void bcal_cmac_nextBlock(bcal_cmac_ctx_t *ctx, const void *block)
{
if (ctx->last_set) {
memxor(ctx->accu, ctx->lastblock, ctx->blocksize_B);
bcal_cipher_enc(ctx->accu, &(ctx->cctx));
}
memcpy(ctx->lastblock, block, ctx->blocksize_B);
ctx->last_set = 1;
}
void bcal_cmac_lastBlock(bcal_cmac_ctx_t *ctx, const void *block,
uint16_t length_b)
{
uint16_t blocksize_b;
blocksize_b = ctx->blocksize_B * 8;
while (length_b >= blocksize_b) {
bcal_cmac_nextBlock(ctx, block);
block = (uint8_t*) block + ctx->blocksize_B;
length_b -= blocksize_b;
}
if (ctx->last_set == 0) {
memxor(ctx->accu, block, (length_b + 7) / 8);
memxor(ctx->accu, ctx->k2, ctx->blocksize_B);
ctx->accu[length_b / 8] ^= 0x80 >> (length_b & 7);
} else {
if (length_b == 0) {
memxor(ctx->accu, ctx->lastblock, ctx->blocksize_B);
memxor(ctx->accu, ctx->k1, ctx->blocksize_B);
} else {
memxor(ctx->accu, ctx->lastblock, ctx->blocksize_B);
bcal_cipher_enc(ctx->accu, &(ctx->cctx));
memxor(ctx->accu, block, (length_b + 7) / 8);
memxor(ctx->accu, ctx->k2, ctx->blocksize_B);
ctx->accu[length_b / 8] ^= 0x80 >> (length_b & 7);
}
}
bcal_cipher_enc(ctx->accu, &(ctx->cctx));
}
void bcal_cmac_ctx2mac(void *dest, uint16_t length_b,
const bcal_cmac_ctx_t *ctx)
{
memcpy(dest, ctx->accu, length_b / 8);
if (length_b & 7) {
((uint8_t*) dest)[length_b / 8] &= 0xff >> (length_b & 7);
((uint8_t*) dest)[length_b / 8] |= (0xff00 >> (length_b & 7))
& (ctx->accu[length_b / 8]);
}
}
void bcal_cmac(void *dest, uint16_t out_length_b, const void *block,
uint32_t length_b, bcal_cmac_ctx_t *ctx)
{
uint16_t blocksize_b;
blocksize_b = ctx->blocksize_B * 8;
while (length_b > blocksize_b) {
bcal_cmac_nextBlock(ctx, block);
block = (uint8_t*) block + ctx->blocksize_B;
length_b -= blocksize_b;
}
bcal_cmac_lastBlock(ctx, block, length_b);
bcal_cmac_ctx2mac(dest, out_length_b, ctx);
}