avr-crypto-lib/bcal/bcal-performance.c

224 lines
5.9 KiB
C

/* bcal-performance.c */
/*
This file is part of the AVR-Crypto-Lib.
Copyright (C) 2006-2015 Daniel Otte (bg@nerilex.org)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* \file bcal-performance.c
* \author Daniel Otte
* \email bg@nerilex.org
* \date 2010-02-16
* \license GPLv3 or later
*
*/
#include "bcal-performance.h"
#include "keysize_descriptor.h"
#include "blockcipher_descriptor.h"
#include "performance_test.h"
#include "stack_measuring.h"
#include "cli.h"
#include "uart.h"
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <avr/pgmspace.h>
#define PATTERN_A 0xAA
#define PATTERN_B 0x55
/*
static
void printvalue(unsigned long v){
char str[20];
int i;
ultoa(v, str, 10);
for(i = 0; i < 10 - strlen(str); ++i){
cli_putc(' ');
}
cli_putstr(str);
}
*/
void bcal_performance(const bcdesc_t *bcd)
{
bcdesc_t bc;
memcpy_P(&bc, bcd, sizeof(bcdesc_t));
uint8_t ctx[bc.ctxsize_B];
uint8_t data[(bc.blocksize_b + 7) / 8];
uint16_t keysize = get_keysize(bc.valid_keysize_desc);
uint8_t key[(keysize + 7) / 8];
uint64_t t;
uint8_t i;
if (bc.type != BCDESC_TYPE_BLOCKCIPHER)
return;
calibrateTimer();
print_overhead();
printf_P(PSTR("\n\n === %S performance === \n"
"\ttype: blockcipher\n"
"\tkeysize (bits): %5"PRIu16"\n"
"\tctxsize (bytes): %5"PRIu16"\n"
"\tblocksize (bits): %5"PRIu16"\n"),
bc.name, keysize, bc.ctxsize_B, bc.blocksize_b);
uart0_flush();
t = 0;
if (bc.init.init1) {
if ((bc.flags & BC_INIT_TYPE) == BC_INIT_TYPE_1) {
for (i = 0; i < 32; ++i) {
startTimer(1);
START_TIMER;
(bc.init.init1)(key, &ctx);
STOP_TIMER;
t += stopTimer();
if (i != 31 && bc.free) {
bc.free(&ctx);
}
}
} else {
for (i = 0; i < 32; ++i) {
startTimer(1);
START_TIMER;
(bc.init.init2)(key, keysize, &ctx);
STOP_TIMER;
t += stopTimer();
if (i != 31 && bc.free) {
bc.free(&ctx);
}
}
}
t >>= 5;
printf_P(PSTR(" init (cycles): %5"PRIu16"\n"), t);
}
uart0_flush();
t = 0;
for (i = 0; i < 32; ++i) {
startTimer(0);
START_TIMER;
bc.enc.enc1(data, &ctx);
STOP_TIMER;
t += stopTimer();
}
t >>= 5;
printf_P(PSTR(" encrypt (cycles): %5"PRIu16"\n"), t);
uart0_flush();
t = 0;
for (i = 0; i < 32; ++i) {
startTimer(0);
START_TIMER;
bc.dec.dec1(data, &ctx);
STOP_TIMER;
t += stopTimer();
}
t >>= 5;
printf_P(PSTR(" decrypt (cycles): %5"PRIu16"\n"), t);
uart0_flush();
if (bc.free) {
uart0_flush();
bc.free(&ctx);
}
}
void bcal_stacksize(const bcdesc_t *bcd)
{
bcdesc_t bc;
stack_measuring_ctx_t smctx;
memcpy_P(&bc, bcd, sizeof(bcdesc_t));
uint8_t ctx[bc.ctxsize_B];
uint8_t data[(bc.blocksize_b + 7) / 8];
uint16_t keysize = get_keysize(bc.valid_keysize_desc);
uint8_t key[(keysize + 7) / 8];
uint16_t t1 = 0, t2 = 0;
if (bc.type != BCDESC_TYPE_BLOCKCIPHER)
return;
printf_P(PSTR("\n === %S stack-usage ===\n"), bc.name);
uart0_flush();
if (bc.init.init1) {
if ((bc.flags & BC_INIT_TYPE) == BC_INIT_TYPE_1) {
cli();
stack_measure_init(&smctx, PATTERN_A);
bc.init.init1(&ctx, key);
t1 = stack_measure_final(&smctx);
stack_measure_init(&smctx, PATTERN_B);
bc.init.init1(&ctx, key);
t2 = stack_measure_final(&smctx);
sei();
} else {
cli();
stack_measure_init(&smctx, PATTERN_A);
bc.init.init2(&ctx, keysize, key);
t1 = stack_measure_final(&smctx);
stack_measure_init(&smctx, PATTERN_B);
bc.init.init2(&ctx, keysize, key);
t2 = stack_measure_final(&smctx);
sei();
}
t1 = (t1 > t2) ? t1 : t2;
printf_P(PSTR(" init (bytes): %5"PRIu16"\n"), t1);
}
cli();
stack_measure_init(&smctx, PATTERN_A);
bc.enc.enc1(data, &ctx);
t1 = stack_measure_final(&smctx);
stack_measure_init(&smctx, PATTERN_B);
bc.enc.enc1(data, &ctx);
t2 = stack_measure_final(&smctx);
sei();
t1 = (t1 > t2) ? t1 : t2;
printf_P(PSTR(" encBlock (bytes): %5"PRIu16"\n"), t1);
cli();
stack_measure_init(&smctx, PATTERN_A);
bc.dec.dec1(data, &ctx);
t1 = stack_measure_final(&smctx);
stack_measure_init(&smctx, PATTERN_B);
bc.dec.dec1(data, &ctx);
t2 = stack_measure_final(&smctx);
sei();
t1 = (t1 > t2) ? t1 : t2;
printf_P(PSTR(" decBlock (bytes): %5"PRIu16"\n"), t1);
if (bc.free) {
bc.free(&ctx);
}
}
void bcal_performance_multiple(const bcdesc_t * const *bcd_list)
{
const bcdesc_t *bcd;
for (;;) {
bcd = (void*) pgm_read_word(bcd_list);
if (!bcd) {
puts_P(PSTR("\n End of performance figures\n"));
return;
}
bcal_performance(bcd);
bcal_stacksize(bcd);
bcd_list = (void*) ((uint8_t*) bcd_list + 2);
}
}