avr-crypto-lib/cscipher/cscipher_small.c

180 lines
4.9 KiB
C

/* cscipher_small_core.c */
/*
This file is part of the ARM-Crypto-Lib.
Copyright (C) 2006-2015 Daniel Otte (bg@nerilex.org)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <avr/pgmspace.h>
#include <stdlib.h>
#include <string.h>
#include "memxor.h"
#include "cscipher.h"
#define DEBUG 0
#if DEBUG
#include "cli.h"
#endif
#define ROTL(a) (((a)<<1)|((a)>>7))
#ifndef SBOX_PROG
#define SBOX_PROG 0
#endif
#if SBOX_PROG
static const uint8_t fg_table[] PROGMEM = {
0xfa, 0xd6, 0xb0, 0xb2, 0x7b, 0x5e, 0x71, 0x78,
0xed, 0xd4, 0xa5, 0xb3, 0xef, 0xdc, 0xe7, 0xf9
};
static
uint8_t p(uint8_t a) {
a ^= pgm_read_byte(fg_table+(a&0xf))&0xf0;
a ^= pgm_read_byte(fg_table+(a>>4)) &0x0f;
a ^= pgm_read_byte(fg_table+(a&0xf))&0xf0;
return a;
}
#define P(a) p(a)
#else
#include "cscipher_sbox.h"
#define P(a) pgm_read_byte(cscipher_sbox+(a))
#endif
static const uint8_t round_const[] PROGMEM = {
0xb7, 0xe1, 0x51, 0x62, 0x8a, 0xed, 0x2a, 0x6a,
0xbf, 0x71, 0x58, 0x80, 0x9c, 0xf4, 0xf3, 0xc7 };
static const uint8_t ks_const[] PROGMEM = {
0x29, 0x0d, 0x61, 0x40, 0x9c, 0xeb, 0x9e, 0x8f,
0x1f, 0x85, 0x5f, 0x58, 0x5b, 0x01, 0x39, 0x86,
0x97, 0x2e, 0xd7, 0xd6, 0x35, 0xae, 0x17, 0x16,
0x21, 0xb6, 0x69, 0x4e, 0xa5, 0x72, 0x87, 0x08,
0x3c, 0x18, 0xe6, 0xe7, 0xfa, 0xad, 0xb8, 0x89,
0xb7, 0x00, 0xf7, 0x6f, 0x73, 0x84, 0x11, 0x63,
0x3f, 0x96, 0x7f, 0x6e, 0xbf, 0x14, 0x9d, 0xac,
0xa4, 0x0e, 0x7e, 0xf6, 0x20, 0x4a, 0x62, 0x30,
0x03, 0xc5, 0x4b, 0x5a, 0x46, 0xa3, 0x44, 0x65
};
static uint16_t m(uint16_t a)
{
uint8_t xl, xr, yl, yr;
uint16_t ret;
xr = a >> 8;
xl = a & 0xff;
yl = (ROTL(xl) & 0x55) ^ xl ^ xr;
yr = ROTL(xl) ^ xr;
ret = (P(yr) << 8) | P(yl);
return ret;
}
static uint16_t m_inv(uint16_t a)
{
uint8_t xl, xr;
xr = P(a >> 8);
xl = P(a & 0xff);
xl ^= xr;
xl ^= (ROTL(xl) & 0xaa);
xr ^= ROTL(xl);
return (xr << 8) | xl;
}
void cscipher_enc(void *buffer, const cscipher_ctx_t *ctx)
{
uint8_t i, j, k;
uint8_t tmp[8];
for (i = 0; i < 8; ++i) {
#if DEBUG
cli_putstr_P(PSTR("\r\nDBG: round "));
cli_hexdump(&i, 1);
cli_putstr_P(PSTR(" buffer:"));
cli_hexdump(buffer, 8);
#endif
for (j = 0; j < 3; ++j) {
if (j == 0) {
memxor(buffer, ctx->keys[i], 8);
} else {
memxor_P(buffer, round_const + ((j == 1) ? 0 : 8), 8);
}
for (k = 0; k < 4; ++k) {
((uint16_t*) tmp)[k] = m(((uint16_t*) buffer)[k]);
}
for (k = 0; k < 4; ++k) {
((uint8_t*) buffer)[k] = tmp[2 * k];
((uint8_t*) buffer)[k + 4] = tmp[2 * k + 1];
}
}
}
memxor(buffer, ctx->keys[8], 8);
}
void cscipher_dec(void *buffer, const cscipher_ctx_t *ctx)
{
uint8_t i = 7, j, k;
uint8_t tmp[8];
memxor(buffer, ctx->keys[8], 8);
do {
for (j = 0; j < 3; ++j) {
for (k = 0; k < 4; ++k) {
tmp[2 * k] = ((uint8_t*) buffer)[k];
tmp[2 * k + 1] = ((uint8_t*) buffer)[4 + k];
}
for (k = 0; k < 4; ++k) {
((uint16_t*) buffer)[k] = m_inv(((uint16_t*) tmp)[k]);
}
if (j == 2) {
memxor(buffer, ctx->keys[i], 8);
} else {
memxor_P(buffer, round_const + ((j == 1) ? 0 : 8), 8);
}
}
} while (i--);
}
void cscipher_init(const void *key, cscipher_ctx_t *ctx)
{
uint8_t tmp_key[16], tmp[8];
uint8_t i, j, k, t = 0;
memcpy(tmp_key, key, 16);
for (i = 0; i < 9; ++i) {
#if DEBUG
cli_putstr_P(PSTR("\r\nDBG: round "));
cli_hexdump(&i, 1);
cli_putstr_P(PSTR(" key state:"));
cli_hexdump(tmp_key, 16);
#endif
memcpy(tmp, tmp_key + (((i & 1) == 0) ? 0 : 8), 8);
memxor_P(tmp, ks_const + 8 * i, 8);
for (j = 0; j < 8; ++j) {
tmp[j] = P(tmp[j]);
}
for (j = 0; j < 8; ++j) {
for (k = 0; k < 8; ++k) {
t <<= 1;
t |= tmp[k] >> 7;
tmp[k] <<= 1;
}
tmp_key[j + (((i & 1) == 0) ? 8 : 0)] ^= t;
}
memcpy(ctx->keys[i], tmp_key + (((i & 1) == 0) ? 8 : 0), 8);
}
}