avr-crypto-lib/seed/seed_C.c

289 lines
7.8 KiB
C

/* seed_C.c */
/*
This file is part of the AVR-Crypto-Lib.
Copyright (C) 2006-2015 Daniel Otte (bg@nerilex.org)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* \file seed_C.c
* \author Daniel Otte
* \date 2007-06-1
* \brief SEED parts in C for AVR
* \par License
* GPL
*
*/
#include <stdint.h>
#include <avr/pgmspace.h>
#include <string.h>
#include "seed_sbox.h"
#include "cli.h"
#include "debug.h"
static
uint32_t g_function(uint32_t x);
/******************************************************************************/
static
void changeendian32(uint32_t * a){
*a = (*a & 0x000000FF) << 24 |
(*a & 0x0000FF00) << 8 |
(*a & 0x00FF0000) >> 8 |
(*a & 0xFF000000) >> 24;
}
/******************************************************************************/
static
uint32_t bigendian_sum32(uint32_t a, uint32_t b){
changeendian32(&a);
changeendian32(&b);
a += b;
changeendian32(&a);
return a;
}
/******************************************************************************/
static
uint32_t bigendian_sub32(uint32_t a, uint32_t b){
changeendian32(&a);
changeendian32(&b);
a -= b;
changeendian32(&a);
return a;
}
/******************************************************************************/
static inline
uint64_t bigendian_rotl8_64(uint64_t a){
/*
changeendian64(&a);
a = (a<<8) | (a>>(64-8));
changeendian64(&a);
*/
a = (a>>8) | (a<<(64-8));
return a;
}
/******************************************************************************/
static inline
uint64_t bigendian_rotr8_64(uint64_t a){
/*
changeendian64(&a);
a = (a>>8) | (a<<(64-8));
changeendian64(&a);
*/
a = (a<<8) | (a>>(64-8));
return a;
}
/******************************************************************************/
static
uint64_t f_function(const uint64_t *a, uint32_t k0, uint32_t k1){
uint32_t c,d;
c = *a & 0x00000000FFFFFFFFLL;
d = (*a>>32) & 0x00000000FFFFFFFFLL;
c ^= k0; d ^= k1;
d ^= c;
d = g_function(d);
c = bigendian_sum32(c,d);
c = g_function(c);
d = bigendian_sum32(c,d);
d = g_function(d);
c = bigendian_sum32(c,d);
return ((uint64_t)d << 32) | c;
}
/******************************************************************************/
#define M0 0xfc
#define M1 0xf3
#define M2 0xcf
#define M3 0x3f
#define X3 (((uint8_t*)(&x))[0])
#define X2 (((uint8_t*)(&x))[1])
#define X1 (((uint8_t*)(&x))[2])
#define X0 (((uint8_t*)(&x))[3])
#define Z3 (((uint8_t*)(&z))[0])
#define Z2 (((uint8_t*)(&z))[1])
#define Z1 (((uint8_t*)(&z))[2])
#define Z0 (((uint8_t*)(&z))[3])
static
uint32_t g_function(uint32_t x){
uint32_t z;
/* sbox substitution */
X3 = pgm_read_byte(&(seed_sbox2[X3]));
X2 = pgm_read_byte(&(seed_sbox1[X2]));
X1 = pgm_read_byte(&(seed_sbox2[X1]));
X0 = pgm_read_byte(&(seed_sbox1[X0]));
/* now the permutation */
Z0 = (X0 & M0) ^ (X1 & M1) ^ (X2 & M2) ^ (X3 & M3);
Z1 = (X0 & M1) ^ (X1 & M2) ^ (X2 & M3) ^ (X3 & M0);
Z2 = (X0 & M2) ^ (X1 & M3) ^ (X2 & M0) ^ (X3 & M1);
Z3 = (X0 & M3) ^ (X1 & M0) ^ (X2 & M1) ^ (X3 & M2);
return z;
}
/******************************************************************************/
typedef struct {
uint32_t k0, k1;
} keypair_t;
keypair_t getnextkeys(uint32_t *keystate, uint8_t curround){
keypair_t ret;
if (curround>15){
/* ERROR */
ret.k0 = ret.k1 = 0;
} else {
/* ret.k0 = g_function(keystate[0] + keystate[2] - pgm_read_dword(&(seed_kc[curround])));
ret.k1 = g_function(keystate[1] - keystate[3] + pgm_read_dword(&(seed_kc[curround]))); */
ret.k0 = bigendian_sum32(keystate[0], keystate[2]);
ret.k0 = bigendian_sub32(ret.k0, pgm_read_dword(&(seed_kc[curround])));
ret.k0 = g_function(ret.k0);
ret.k1 = bigendian_sub32(keystate[1], keystate[3]);
ret.k1 = bigendian_sum32(ret.k1, pgm_read_dword(&(seed_kc[curround])));
ret.k1 = g_function(ret.k1);
if (curround & 1){
/* odd round (1,3,5, ...) */
((uint64_t*)keystate)[1] = bigendian_rotl8_64( ((uint64_t*)keystate)[1] );
} else {
/* even round (0,2,4, ...) */
((uint64_t*)keystate)[0] = bigendian_rotr8_64(((uint64_t*)keystate)[0]);
}
}
return ret;
}
/******************************************************************************/
keypair_t getprevkeys(uint32_t *keystate, uint8_t curround){
keypair_t ret;
if (curround>15){
/* ERROR */
ret.k0 = ret.k1 = 0;
} else {
if (curround & 1){
/* odd round (1,3,5, ..., 15) */
((uint64_t*)keystate)[1] = bigendian_rotr8_64( ((uint64_t*)keystate)[1] );
} else {
/* even round (0,2,4, ..., 14) */
((uint64_t*)keystate)[0] = bigendian_rotl8_64(((uint64_t*)keystate)[0]);
}
/* ret.k0 = g_function(keystate[0] + keystate[2] - pgm_read_dword(&(seed_kc[curround])));
ret.k1 = g_function(keystate[1] - keystate[3] + pgm_read_dword(&(seed_kc[curround]))); */
ret.k0 = bigendian_sum32(keystate[0], keystate[2]);
ret.k0 = bigendian_sub32(ret.k0, pgm_read_dword(&(seed_kc[curround])));
ret.k0 = g_function(ret.k0);
ret.k1 = bigendian_sub32(keystate[1], keystate[3]);
ret.k1 = bigendian_sum32(ret.k1, pgm_read_dword(&(seed_kc[curround])));
ret.k1 = g_function(ret.k1);
}
return ret;
}
/******************************************************************************/
typedef struct{
uint32_t k[4];
} seed_ctx_t;
/******************************************************************************/
void seed_init(const void * key, seed_ctx_t * ctx){
memcpy(ctx->k, key, 128/8);
}
/******************************************************************************/
#define L (((uint64_t*)buffer)[0])
#define R (((uint64_t*)buffer)[1])
void seed_enc(void * buffer, const seed_ctx_t * ctx){
uint8_t r;
keypair_t k;
for(r=0; r<8; ++r){
k = getnextkeys(((seed_ctx_t*)ctx)->k, 2*r);
/*
DEBUG_S("\r\n\tDBG ka,0: "); cli_hexdump(&k.k0, 4);
DEBUG_S("\r\n\tDBG ka,1: "); cli_hexdump(&k.k1, 4);
DEBUG_S("\r\n\t DBG L: "); cli_hexdump((uint8_t*)buffer+0, 8);
DEBUG_S("\r\n\t DBG R: "); cli_hexdump((uint8_t*)buffer+8, 8);
*/
L ^= f_function(&R,k.k0,k.k1);
k = getnextkeys(((seed_ctx_t*)ctx)->k, 2*r+1);
/*
DEBUG_S("\r\n\tDBG kb,0: "); cli_hexdump(&k.k0, 4);
DEBUG_S("\r\n\tDBG kb,1: "); cli_hexdump(&k.k1, 4);
DEBUG_S("\r\n\t DBG L: "); cli_hexdump((uint8_t*)buffer+8, 8);
DEBUG_S("\r\n\t DBG R: "); cli_hexdump((uint8_t*)buffer+0, 8);
*/
R ^= f_function(&L,k.k0,k.k1);
}
/* just an exchange without temp. variable */
L ^= R;
R ^= L;
L ^= R;
}
/******************************************************************************/
#define L (((uint64_t*)buffer)[0])
#define R (((uint64_t*)buffer)[1])
void seed_dec(void * buffer, seed_ctx_t * ctx){
int8_t r;
keypair_t k;
for(r=7; r>=0; --r){
k = getprevkeys(((seed_ctx_t*)ctx)->k, 2*r+1);
/*
DEBUG_S("\r\n\tDBG ka,0: "); cli_hexdump(&k.k0, 4);
DEBUG_S("\r\n\tDBG ka,1: "); cli_hexdump(&k.k1, 4);
DEBUG_S("\r\n\t DBG L: "); cli_hexdump((uint8_t*)buffer+0, 8);
DEBUG_S("\r\n\t DBG R: "); cli_hexdump((uint8_t*)buffer+8, 8);
*/
L ^= f_function(&R,k.k0,k.k1);
k = getprevkeys(((seed_ctx_t*)ctx)->k, 2*r+0);
/*
DEBUG_S("\r\n\tDBG kb,0: "); cli_hexdump(&k.k0, 4);
DEBUG_S("\r\n\tDBG kb,1: "); cli_hexdump(&k.k1, 4);
DEBUG_S("\r\n\t DBG L: "); cli_hexdump((uint8_t*)buffer+8, 8);
DEBUG_S("\r\n\t DBG R: "); cli_hexdump((uint8_t*)buffer+0, 8);
*/
R ^= f_function(&L,k.k0,k.k1);
}
/* just an exchange without temp. variable */
L ^= R;
R ^= L;
L ^= R;
}