avr-crypto-lib/test_src/main-ecdsa-test.c

1053 lines
32 KiB
C

/* main-dsa-test.c */
/*
This file is part of the AVR-Crypto-Lib.
Copyright (C) 2006-2015 Daniel Otte (bg@nerilex.org)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* ECDSA test-suit
*
*/
#include <ctype.h>
#include "main-test-common.h"
#include "noekeon.h"
#include "noekeon_prng.h"
#include "bigint.h"
#include "bigint_io.h"
#include "nist_p192.h"
#include "ecc.h"
#include "ecdsa_sign.h"
#include "hfal_sha1.h"
#include "hfal_sha224.h"
#include "hfal_sha256.h"
#include "hfal_sha384.h"
#include "hfal_sha512.h"
#include "hfal-basic.h"
#include "performance_test.h"
#include "hfal_sha1.h"
#include "base64_enc.h"
#include "base64_dec.h"
char *algo_name = "ECDSA";
/*****************************************************************************
* additional validation-functions *
*****************************************************************************/
uint8_t prng_get_byte(void){
return random8();
}
const hfdesc_t *hash_select(void){
const hfdesc_t *hashes[] = { &sha1_desc, &sha224_desc, &sha256_desc, &sha384_desc, &sha512_desc };
uint8_t index;
int selection;
printf_P(PSTR("Please select one of the following hash functions:\n"));
for(index = 0; index < sizeof(hashes) / sizeof(hashes[0]); ++index){
printf_P(PSTR(" %c: %S\n"), index + 'a', pgm_read_word(&(hashes[index]->name)));
}
do{
printf_P(PSTR("[a]: "));
selection = getchar();
putchar(selection);
if(selection == '\n' || selection == '\r'){
selection = 0;
}else{
putchar('\n');
selection -= 'a';
}
}while(selection > sizeof(hashes) / sizeof(hashes[0]));
return hashes[selection];
}
uint8_t convert_hexchar_to_value(char a){
if(a >= 0 && a <= 9){
return a - '0';
}
if(a >= 'a' && a <= 'f'){
return a - 'a';
}
if(a >= 'A' && a <= 'F'){
return a - 'A';
}
return 0;
}
uint8_t convert_hex_to_byte(char a, char b){
return (convert_hexchar_to_value(a) << 4) | convert_hexchar_to_value(b);
}
void *hash_message(hfdesc_t *hash_function){
uint8_t *block, *hash_value;
uint16_t index = 0;
hfgen_ctx_t ctx;
if(hash_function == NULL){
return NULL;
}
block = malloc(hfal_hash_getBlocksize(hash_function) / 8);
if(block == NULL){
return NULL;
}
hash_value = malloc(hfal_hash_getHashsize(hash_function) / 8);
if(hash_value == NULL){
free(block);
return NULL;
}
hfal_hash_init(hash_function, &ctx);
for(;;){
int a,b;
a = getchar();
if(!isxdigit(a)){
hfal_hash_lastBlock(&ctx, block, index * 8);
break;
}
putchar(a);
b = getchar();
if(!isxdigit(b)){
printf_P(PSTR("*** invalid ***\n"));
hfal_hash_free(&ctx);
free(hash_value);
free(block);
return NULL;
}
putchar(b);
block[index++] = convert_hex_to_byte(a, b);
if(index == hfal_hash_getBlocksize(hash_function) / 8){
hfal_hash_nextBlock(&ctx, block);
}
}
hfal_hash_ctx2hash(hash_value, &ctx);
hfal_hash_free(&ctx);
free(block);
return hash_value;
}
void testrun_performance_invert_bigint(void){
printf_P(PSTR("\n=== performance measurement (invert) ===\n"));
unsigned i,j;
uint64_t time = 0;
bigint_t a, v;
bigint_word_t v_w[192 / BIGINT_WORD_SIZE];
bigint_word_t a_w[192 / BIGINT_WORD_SIZE];
a.wordv = a_w;
v.wordv = v_w;
for(j = 0; j < 32; ++j){
for(i = 0; i < 192 / BIGINT_WORD_SIZE; ++i){
((uint8_t*)v_w)[i] = random();
}
v.length_W = 192 / BIGINT_WORD_SIZE;
v.info = 0;
bigint_adjust(&v);
for(i = 0; i < 16; ++i){
startTimer(1);
START_TIMER;
bigint_inverse(&a, &v, &nist_curve_p192_p);
STOP_TIMER;
time += stopTimer();
}
}
time >>= 8;
++time;
time >>= 1;
printf_P(PSTR(" invert costs %"PRIu32" cycles\n"), (uint32_t)time);
}
void testrun_performance_multiply_bigint(void){
printf_P(PSTR("\n=== performance measurement (invert) ===\n"));
unsigned i,j;
uint64_t time_a = 0, time_b = 0;
uint32_t tmp;
bigint_t a, b, v;
bigint_word_t v_w[192 * 2 / BIGINT_WORD_SIZE];
bigint_word_t a_w[192 / BIGINT_WORD_SIZE];
bigint_word_t b_w[192 / BIGINT_WORD_SIZE];
a.wordv = a_w;
b.wordv = b_w;
v.wordv = v_w;
for(j = 0; j < 32; ++j){
for(i = 0; i < 192 / BIGINT_WORD_SIZE; ++i){
((uint8_t*)a_w)[i] = random();
}
a.length_W = 192 / BIGINT_WORD_SIZE;
a.info = 0;
bigint_adjust(&a);
for(i = 0; i < 192 / BIGINT_WORD_SIZE; ++i){
((uint8_t*)b_w)[i] = random();
}
b.length_W = 192 / BIGINT_WORD_SIZE;
b.info = 0;
bigint_adjust(&b);
for(i = 0; i < 16; ++i){
startTimer(1);
START_TIMER;
bigint_mul_u(&v,&a, &b);
STOP_TIMER;
tmp = stopTimer();
time_a += tmp;
time_b += tmp;
START_TIMER;
bigint_reduce_p192(&v);
STOP_TIMER;
tmp = stopTimer();
time_b += tmp;
}
}
time_a >>= 8;
++time_a;
time_a >>= 1;
time_b >>= 8;
++time_b;
time_b >>= 1;
printf_P(PSTR(" multiply costs %7"PRIu32" cycles\n"), (uint32_t)time_a);
printf_P(PSTR(" multiply + reduce costs %7"PRIu32" cycles\n"), (uint32_t)time_b);
}
void testrun_performance_reduce_bigint(void){
printf_P(PSTR("\n=== performance measurement (reduce) ===\n"));
unsigned i, j;
bigint_t a,b,v;
bigint_word_t v_w[192 * 2 / BIGINT_WORD_SIZE];
bigint_word_t a_w[192 * 2 / BIGINT_WORD_SIZE];
bigint_word_t b_w[192 * 2 / BIGINT_WORD_SIZE];
uint32_t time_a, time_b;
int32_t time_diff;
int16_t faster_percent;
v.wordv = v_w;
for(j = 0; j < 32; ++j){
do{
for(i = 0; i < 192 * 2 / BIGINT_WORD_SIZE; ++i){
((uint8_t*)v_w)[i] = random();
}
v.length_W = 192 * 2 / BIGINT_WORD_SIZE;
v.info = 0;
bigint_adjust(&v);
}while(0);
// printf_P(PSTR("candidate:\n"));
// bigint_print_hex(&v);
a.wordv = a_w;
b.wordv = b_w;
calibrateTimer();
// printf_P(PSTR("\n going to test optimized version: ...\n"));
uart0_flush();
time_a = 0;
for(i = 0; i < 16; ++i){
bigint_copy(&a, &v);
startTimer(1);
START_TIMER;
bigint_reduce_p192(&a);
STOP_TIMER;
time_a += stopTimer();
}
// printf_P(PSTR(" took: %"PRIu32" cycles\nresult:"), time);
// bigint_print_hex(&a);
// printf_P(PSTR("\n going to test not-optimized version: ...\n"));
// uart0_flush();
time_b = 0;
for(i = 0; i < 16; ++i){
bigint_copy(&b, &v);
startTimer(1);
START_TIMER;
bigint_reduce(&b, &nist_curve_p192_p);
STOP_TIMER;
time_b += stopTimer();
}
// printf_P(PSTR(" took: %"PRIu32" cycles\nresult:"), time);
// bigint_print_hex(&b);
time_diff = time_b - time_a;
faster_percent = (time_diff * 100) / time_b;
printf_P(PSTR(" delta: %7"PRId32" (%3"PRId16"%%) :-"), time_diff, faster_percent);
if(bigint_cmp_u(&a, &b)){
printf_P(PSTR("(\n"));
} else {
printf_P(PSTR(")\n"));
}
uart0_flush();
}
}
uint8_t ecc_affine_point_alloc(ecc_affine_point_t *p, uint16_t length_b){
size_t len = (length_b + BIGINT_WORD_SIZE - 1)/ BIGINT_WORD_SIZE;
if (! (p->x.wordv = malloc(len))){
return 1;
}
if (! (p->y.wordv = malloc(len))){
free(p->x.wordv);
return 2;
}
return 0;
}
void ecc_affine_point_free(ecc_affine_point_t *p){
free(p->x.wordv);
free(p->y.wordv);
}
void testrun_square(void){
bigint_word_t a_w[] = {
0x82, 0x6f, 0x79, 0x39, 0x47, 0x06, 0x26, 0x9f,
0x4b, 0xe2, 0x15, 0x61, 0x6f, 0xa1, 0xd4, 0x0c,
0x1f, 0x24, 0x3a, 0xd4, 0xc2, 0x6d, 0xe8, 0xb6
};
bigint_word_t b_w[2 * 192 / BIGINT_WORD_SIZE];
bigint_t a, b;
a.wordv = a_w;
a.length_W = sizeof(a_w);
a.info = 7;
b.wordv = b_w;
b.info = 0;
b.length_W = 0;
printf_P(PSTR("\n a = "));
bigint_print_hex(&a);
bigint_square(&b, &a);
printf_P(PSTR("\n a^2 = "));
bigint_print_hex(&b);
bigint_reduce_p192(&b);
printf_P(PSTR("\n a^2 %% p = "));
bigint_print_hex(&b);
putchar('\n');
}
#if 1
/*
0: b3cfed2634516540528622e16c396c229e50bbdf773f8423
1: b6e86dc2d43a241f0cd4a16f6115e24b9f26064739796f82
2: 563f557e41731f268f82fe81c8fed959600dd46649ebeeee
3: 5e45169bd87475db886b8a7833bb0845f5b011a7ce0c1766
4: 4abf34c505a73308a804dcefacbd8f7b10b59fa6ac6421a
*/
uint8_t test_point_x_w[] = {
0x23, 0x84, 0x3f, 0x77, 0xdf, 0xbb, 0x50, 0x9e,
0x22, 0x6c, 0x39, 0x6c, 0xe1, 0x22, 0x86, 0x52,
0x40, 0x65, 0x51, 0x34, 0x26, 0xed, 0xcf, 0xb3
};
uint8_t test_point_y_w[] = {
0x82, 0x6f, 0x79, 0x39, 0x47, 0x06, 0x26, 0x9f,
0x4b, 0xe2, 0x15, 0x61, 0x6f, 0xa1, 0xd4, 0x0c,
0x1f, 0x24, 0x3a, 0xd4, 0xc2, 0x6d, 0xe8, 0xb6
};
uint8_t test_point_z1_w[] = {
0xee, 0xee, 0xeb, 0x49, 0x66, 0xd4, 0x0d, 0x60,
0x59, 0xd9, 0xfe, 0xc8, 0x81, 0xfe, 0x82, 0x8f,
0x26, 0x1f, 0x73, 0x41, 0x7e, 0x55, 0x3f, 0x56
};
uint8_t test_point_z2_w[] = {
0x66, 0x17, 0x0c, 0xce, 0xa7, 0x11, 0xb0, 0xf5,
0x45, 0x08, 0xbb, 0x33, 0x78, 0x8a, 0x6b, 0x88,
0xdb, 0x75, 0x74, 0xd8, 0x9b, 0x16, 0x45, 0x5e
};
uint8_t test_point_z3_w[] = {
0x1a, 0x42, 0xc6, 0x6a, 0xfa, 0x59, 0x0b, 0xb1,
0xf7, 0xd8, 0xcb, 0xfa, 0xce, 0x4d, 0x80, 0x8a,
0x30, 0x73, 0x5a, 0x50, 0x4c, 0xf3, 0xab, 0x04
};
ecc_combi_point_t test_point = {
.chudnovsky = {
.x = {
.wordv = test_point_x_w,
.length_W = sizeof(test_point_x_w),
.info = 7
},
.y = {
.wordv = test_point_y_w,
.length_W = sizeof(test_point_y_w),
.info = 7
},
.z1 = {
.wordv = test_point_z1_w,
.length_W = sizeof(test_point_z1_w),
.info = 6
},
.z2 = {
.wordv = test_point_z2_w,
.length_W = sizeof(test_point_z2_w),
.info = 6
},
.z3 = {
.wordv = test_point_z3_w,
.length_W = sizeof(test_point_z3_w),
.info = 2
}
}
};
void testrun_genkey2(void){
ecc_chudnovsky_point_t q;
ecc_affine_point_t qa;
printf_P(PSTR("\n== testing key generation (2) ==\n"));
if(ecc_chudnovsky_point_alloc(&q, 192)){
printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__);
return;
}
if(ecc_affine_point_alloc(&qa, 192)){
printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__);
return;
}
ecc_chudnovsky_point_print(&test_point.chudnovsky);
ecc_chudnovsky_to_affine_point(&qa, &test_point.chudnovsky, &nist_curve_p192);
printf_P(PSTR("\n Qx: "));
bigint_print_hex(&qa.x);
printf_P(PSTR("\n Qy: "));
bigint_print_hex(&qa.y);
printf_P(PSTR("\n================\n"));
ecc_chudnovsky_point_double_sp(&q, &test_point.chudnovsky, &nist_curve_p192);
ecc_chudnovsky_point_print(&q);
ecc_chudnovsky_to_affine_point(&qa, &q, &nist_curve_p192);
printf_P(PSTR("\n Qx: "));
bigint_print_hex(&qa.x);
printf_P(PSTR("\n Qy: "));
bigint_print_hex(&qa.y);
puts("\n");
}
void testrun_genkey1(void){
ecc_chudnovsky_point_t q;
ecc_affine_point_t qa;
uint8_t k_w[] = {
// e5ce89a34adddf25ff3bf1ffe6803f57d0220de3118798ea
0xea, 0x98, 0x87, 0x11, 0xe3, 0x0d, 0x22, 0xd0,
0x57, 0x3f, 0x80, 0xe6, 0xff, 0xf1, 0x3b, 0xff,
0x25, 0xdf, 0xdd, 0x4a, 0xa3, 0x89, 0xce, 0xe5
};
bigint_t k = {
.length_W = sizeof(k_w),
.wordv = k_w,
.info = 7
};
printf_P(PSTR("\n== testing key generation ==\n"));
if(ecc_chudnovsky_point_alloc(&q, 192)){
printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__);
return;
}
if(ecc_affine_point_alloc(&qa, 192)){
printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__);
return;
}
printf_P(PSTR(" k: "));
bigint_print_hex(&k);
ecc_chudnovsky_multiplication(&q, &k, &nist_curve_p192_basepoint.chudnovsky, &nist_curve_p192);
ecc_chudnovsky_to_affine_point(&qa, &q, &nist_curve_p192);
printf_P(PSTR("\n Qx: "));
bigint_print_hex(&qa.x);
printf_P(PSTR("\n Qy: "));
bigint_print_hex(&qa.y);
puts("\n");
ecc_affine_point_free(&qa);
ecc_chudnovsky_point_free(&q);
}
void testrun_genkey3(void){
ecc_chudnovsky_point_t q;
ecc_affine_point_t qa;
uint8_t k_w[] = {
0xb2, 0x51, 0x97, 0xc3, 0x7c, 0x61, 0xf8, 0x8f,
0x19, 0x91, 0xcc, 0x67, 0xb5, 0x1c, 0x34, 0x23,
0xff, 0x13, 0xad, 0x14, 0x57, 0x43, 0x14, 0x7d
};
bigint_t k = {
.length_W = sizeof(k_w),
.wordv = k_w,
.info = 6
};
printf_P(PSTR("\n== testing key generation ==\n"));
if(ecc_chudnovsky_point_alloc(&q, 192)){
printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__);
return;
}
if(ecc_affine_point_alloc(&qa, 192)){
printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__);
return;
}
printf_P(PSTR(" k: "));
bigint_print_hex(&k);
ecc_chudnovsky_double_and_add(&q, &k, &nist_curve_p192_basepoint.chudnovsky, &nist_curve_p192);
ecc_chudnovsky_to_affine_point(&qa, &q, &nist_curve_p192);
printf_P(PSTR("\n Qx: "));
bigint_print_hex(&qa.x);
printf_P(PSTR("\n Qy: "));
bigint_print_hex(&qa.y);
puts("\n");
ecc_affine_point_free(&qa);
ecc_chudnovsky_point_free(&q);
}
void testrun_genkey(void){
ecc_chudnovsky_point_t q;
ecc_affine_point_t qa;
uint32_t time;
bigint_t k;
uint8_t r;
printf_P(PSTR("\n== testing key generation ==\n"));
printf_P(PSTR("enter secret key d: "));
bigint_read_hex_echo(&k);
putchar('\n');
if(ecc_chudnovsky_point_alloc(&q, 192)){
printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__);
return;
}
if(ecc_affine_point_alloc(&qa, 192)){
ecc_chudnovsky_point_free(&q);
printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__);
return;
}
printf_P(PSTR("(naf) k: "));
bigint_print_hex(&k);
startTimer(1);
START_TIMER;
r = ecc_chudnovsky_naf_multiplication(&q, &k, &nist_curve_p192_basepoint.chudnovsky, &nist_curve_p192);
STOP_TIMER;
time = stopTimer();
ecc_chudnovsky_to_affine_point(&qa, &q, &nist_curve_p192);
printf_P(PSTR("\n Qx: "));
bigint_print_hex(&qa.x);
printf_P(PSTR("\n Qy: "));
bigint_print_hex(&qa.y);
printf_P(PSTR("\n time: %"PRIu32" cycles (r code: %"PRIu8")\n"), time, r);
printf_P(PSTR("(d&a) k: "));
bigint_print_hex(&k);
startTimer(1);
START_TIMER;
r = ecc_chudnovsky_double_and_add(&q, &k, &nist_curve_p192_basepoint.chudnovsky, &nist_curve_p192);
STOP_TIMER;
time = stopTimer();
ecc_chudnovsky_to_affine_point(&qa, &q, &nist_curve_p192);
printf_P(PSTR("\n Qx: "));
bigint_print_hex(&qa.x);
printf_P(PSTR("\n Qy: "));
bigint_print_hex(&qa.y);
printf_P(PSTR("\n time: %"PRIu32" cycles (r code: %"PRIu8")\n"), time, r);
free(k.wordv);
ecc_chudnovsky_point_free(&q);
ecc_affine_point_free(&qa);
}
/*
N is
3128D2B4 B1C96B14 36F8DE99 FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146BC9B1 B4D22831
--------------------------------------------------------------
C is
78916860 32FD8057 F636B44B 1F47CCE5 64D25099 23A7465A
--------------------------------------------------------------
D is
78916860 32FD8057 F636B44B 1F47CCE5 64D25099 23A7465B
Q_x is
FBA2AAC6 47884B50 4EB8CD5A 0A1287BA BCC62163 F606A9A2
Q_y is
DAE6D4CC 05EF4F27 D79EE38B 71C9C8EF 4865D988 50D84AA5
*/
void testrun_interm(void){
ecc_chudnovsky_point_t q;
ecc_affine_point_t qa;
uint32_t time;
bigint_t k;
uint8_t r;
printf_P(PSTR("\n== testing key generation ==\n"));
printf_P(PSTR("enter secret key d: "));
bigint_read_hex_echo(&k);
putchar('\n');
if(ecc_chudnovsky_point_alloc(&q, 192)){
printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__);
return;
}
if(ecc_affine_point_alloc(&qa, 192)){
ecc_chudnovsky_point_free(&q);
printf_P(PSTR("ERROR: OOM! <%s %s %d>\n"), __FILE__, __func__, __LINE__);
return;
}
printf_P(PSTR("(naf) k: "));
bigint_print_hex(&k);
startTimer(1);
START_TIMER;
r = ecc_chudnovsky_naf_multiplication(&q, &k, &nist_curve_p192_basepoint.chudnovsky, &nist_curve_p192);
STOP_TIMER;
time = stopTimer();
ecc_chudnovsky_to_affine_point(&qa, &q, &nist_curve_p192);
printf_P(PSTR("\n Qx: "));
bigint_print_hex(&qa.x);
printf_P(PSTR("\n Qy: "));
bigint_print_hex(&qa.y);
printf_P(PSTR("\n time: %"PRIu32" cycles (r code: %"PRIu8")\n"), time, r);
printf_P(PSTR("(d&a) k: "));
bigint_print_hex(&k);
startTimer(1);
START_TIMER;
r = ecc_chudnovsky_double_and_add(&q, &k, &nist_curve_p192_basepoint.chudnovsky, &nist_curve_p192);
STOP_TIMER;
time = stopTimer();
ecc_chudnovsky_to_affine_point(&qa, &q, &nist_curve_p192);
printf_P(PSTR("\n Qx: "));
bigint_print_hex(&qa.x);
printf_P(PSTR("\n Qy: "));
bigint_print_hex(&qa.y);
printf_P(PSTR("\n time: %"PRIu32" cycles (r code: %"PRIu8")\n"), time, r);
free(k.wordv);
ecc_chudnovsky_point_free(&q);
ecc_affine_point_free(&qa);
}
#endif
const uint8_t ecdsa_test_1_msg[] PROGMEM = {
/*
0xcf, 0x71, 0xa0, 0xe4, 0xce, 0x59, 0x43, 0x11,
0x77, 0x88, 0x50, 0x87, 0x53, 0x78, 0xd0, 0xee,
0xa3, 0xc0, 0x32, 0xa4, 0xbc, 0xc0, 0xdc, 0x1c,
0xf2, 0x9d, 0x01, 0xb9, 0xc5, 0x10, 0x78, 0x9c,
0xd5, 0x2f, 0xc3, 0x8c, 0x74, 0xe6, 0xa4, 0x27,
0x87, 0xd0, 0xf2, 0x7c, 0xe2, 0x93, 0x20, 0x7a,
0xfd, 0xd0, 0x11, 0x7a, 0xcc, 0x71, 0xb9, 0x16,
0x63, 0x06, 0xce, 0x56, 0xf1, 0xa7, 0xf1, 0xc6,
0x0a, 0x9d, 0x68, 0x7d, 0x12, 0x5e, 0xb0, 0x7e,
0x26, 0xe5, 0x51, 0xdc, 0x14, 0x0e, 0x8a, 0x04,
0xaf, 0xa2, 0xa1, 0x6f, 0x98, 0xb5, 0x1b, 0xa9,
0x18, 0x96, 0xbf, 0x32, 0x0f, 0xd4, 0xd6, 0xf1,
0xa4, 0x4b, 0x46, 0xf3, 0x3d, 0xae, 0x39, 0xcc,
0x24, 0xf0, 0x4a, 0x5d, 0x86, 0x0c, 0xb1, 0x4f,
0x6b, 0x6e, 0x8a, 0x69, 0x73, 0xb4, 0x9f, 0xd2,
0xa7, 0xbc, 0xeb, 0x48, 0xd7, 0x48, 0xf7, 0xeb
*/
0xeb, 0xf7, 0x48, 0xd7, 0x48, 0xeb, 0xbc, 0xa7,
0xd2, 0x9f, 0xb4, 0x73, 0x69, 0x8a, 0x6e, 0x6b,
0x4f, 0xb1, 0x0c, 0x86, 0x5d, 0x4a, 0xf0, 0x24,
0xcc, 0x39, 0xae, 0x3d, 0xf3, 0x46, 0x4b, 0xa4,
0xf1, 0xd6, 0xd4, 0x0f, 0x32, 0xbf, 0x96, 0x18,
0xa9, 0x1b, 0xb5, 0x98, 0x6f, 0xa1, 0xa2, 0xaf,
0x04, 0x8a, 0x0e, 0x14, 0xdc, 0x51, 0xe5, 0x26,
0x7e, 0xb0, 0x5e, 0x12, 0x7d, 0x68, 0x9d, 0x0a,
0xc6, 0xf1, 0xa7, 0xf1, 0x56, 0xce, 0x06, 0x63,
0x16, 0xb9, 0x71, 0xcc, 0x7a, 0x11, 0xd0, 0xfd,
0x7a, 0x20, 0x93, 0xe2, 0x7c, 0xf2, 0xd0, 0x87,
0x27, 0xa4, 0xe6, 0x74, 0x8c, 0xc3, 0x2f, 0xd5,
0x9c, 0x78, 0x10, 0xc5, 0xb9, 0x01, 0x9d, 0xf2,
0x1c, 0xdc, 0xc0, 0xbc, 0xa4, 0x32, 0xc0, 0xa3,
0xee, 0xd0, 0x78, 0x53, 0x87, 0x50, 0x88, 0x77,
0x11, 0x43, 0x59, 0xce, 0xe4, 0xa0, 0x71, 0xcf
};
/*
* d = e14f37b3d1374ff8b03f41b9b3fdd2f0ebccf275d660d7f3
*/
const uint8_t ecdsa_test_1_d[] PROGMEM = {
0xf3, 0xd7, 0x60, 0xd6, 0x75, 0xf2, 0xcc, 0xeb,
0xf0, 0xd2, 0xfd, 0xb3, 0xb9, 0x41, 0x3f, 0xb0,
0xf8, 0x4f, 0x37, 0xd1, 0xb3, 0x37, 0x4f, 0xe1
};
/*
* k = cb0abc7043a10783684556fb12c4154d57bc31a289685f25
*/
const uint8_t ecdsa_test_1_k[] PROGMEM = {
0x25, 0x5f, 0x68, 0x89, 0xa2, 0x31, 0xbc, 0x57,
0x4d, 0x15, 0xc4, 0x12, 0xfb, 0x56, 0x45, 0x68,
0x83, 0x07, 0xa1, 0x43, 0x70, 0xbc, 0x0a, 0xcb
};
void hash_mem_P(const hfdesc_t *hfdesc, void *dest, const void *msg, uint16_t msg_len_b){
uint16_t blocksize = hfal_hash_getBlocksize(hfdesc);
uint8_t block[blocksize / 8];
hfgen_ctx_t ctx;
hfal_hash_init(hfdesc, &ctx);
while(msg_len_b > blocksize){
memcpy_P(block, msg, blocksize / 8);
msg = (uint8_t*)msg + blocksize / 8;
msg_len_b -= blocksize;
hfal_hash_nextBlock(&ctx, block);
}
memcpy_P(block, msg, (msg_len_b + 7) / 8);
hfal_hash_lastBlock(&ctx, block, msg_len_b);
hfal_hash_ctx2hash(dest, &ctx);
hfal_hash_free(&ctx);
}
const uint8_t ecdsa_test_2_msg[] PROGMEM = {
0x66, 0xa2, 0x51, 0x3d, 0x7b, 0x60, 0x45, 0xe5,
0x66, 0x79, 0xb0, 0x32, 0xca, 0xd4, 0x5f, 0xb1,
0x82, 0x28, 0x9c, 0xa7, 0x6a, 0x88, 0xc0, 0x6d,
0x78, 0xc8, 0x5f, 0x3d, 0xd3, 0x80, 0x45, 0x90,
0x20, 0x5b, 0x73, 0xa7, 0x84, 0x24, 0x9a, 0x0a,
0x0c, 0x8b, 0xf2, 0xf2, 0x21, 0x45, 0xd1, 0x05,
0x21, 0x9b, 0x48, 0x0d, 0x74, 0x60, 0x7c, 0x02,
0xb8, 0xa6, 0xb6, 0xb4, 0x59, 0x25, 0x9e, 0x4f,
0xdf, 0xe2, 0xbd, 0xb4, 0xab, 0x22, 0x38, 0x01,
0x75, 0x35, 0x29, 0x1d, 0x7a, 0xc1, 0xab, 0xda,
0x66, 0xc4, 0xf6, 0xdc, 0xea, 0x9e, 0x5d, 0x0b,
0xf0, 0x5a, 0x93, 0x06, 0xf3, 0x33, 0xb0, 0x0e,
0x56, 0x34, 0x2f, 0x75, 0x53, 0x40, 0x21, 0x1a,
0xc2, 0x94, 0xac, 0x21, 0xa7, 0xc2, 0xb2, 0x67,
0x12, 0xb8, 0x79, 0x95, 0x1b, 0x2e, 0x23, 0xf6,
0x48, 0x7e, 0x4d, 0x39, 0x89, 0x9f, 0xe3, 0x74
};
const uint8_t ecdsa_test_2_d[] PROGMEM = {
0xeb, 0x8e, 0x9f, 0x04, 0x7d, 0xb5, 0x9a, 0x80,
0x34, 0x6f, 0xcd, 0xf1, 0xcc, 0x33, 0xbb, 0x78,
0xbe, 0xc6, 0xb8, 0x76, 0xaf, 0x9f, 0x4b, 0x69
};
const uint8_t ecdsa_test_2_k[] PROGMEM = {
0x8e, 0xd5, 0x00, 0x34, 0x08, 0x09, 0x60, 0x36,
0x2e, 0xfe, 0x16, 0xd0, 0x53, 0x37, 0xa2, 0xf5,
0x47, 0xfa, 0x11, 0xbc, 0xb1, 0xc2, 0xe8, 0x41
};
#if 0
void test_sign1(void){
bigint_word_t d_w[sizeof(ecdsa_test_1_d)];
uint8_t rnd[sizeof(ecdsa_test_1_k)];
uint8_t *hash;
bigint_t d;
const hfdesc_t *hash_desc;
ecc_combi_point_t q;
ecdsa_signature_t sign;
ecdsa_ctx_t ctx;
uint8_t r;
putchar('\n');
d.wordv = d_w;
memcpy_P(rnd, ecdsa_test_1_k, sizeof(ecdsa_test_1_k));
memcpy_P(d_w, ecdsa_test_1_d, sizeof(ecdsa_test_1_d));
d.length_W = (sizeof(ecdsa_test_1_d) + sizeof(bigint_word_t) - 1) / sizeof(bigint_word_t);
d.info = 0;
bigint_adjust(&d);
hash_desc = &sha1_desc; //hash_select();
hash = malloc(hfal_hash_getHashsize(hash_desc) / 8);
if(hash == NULL){
printf_P(PSTR("DBG: XXX <%S %s %d>\n"), PSTR(__FILE__), __func__, __LINE__);
}
hash_mem_P(hash_desc, hash, ecdsa_test_1_msg, sizeof(ecdsa_test_1_msg) * 8);
printf_P(PSTR("msg hash: "));
cli_hexdump(hash, hfal_hash_getHashsize(hash_desc) / 8);
putchar('\n');
ecc_affine_point_alloc(&q.affine, nist_curve_p192_p.length_W * sizeof(bigint_word_t));
// ecc_chudnovsky_point_alloc(&q.chudnovsky, nist_curve_p192_p.length_W * sizeof(bigint_word_t));
// ctx.basepoint = &nist_curve_p192_basepoint.chudnovsky;
ctx.basepoint = &nist_curve_p192_basepoint.affine;
ctx.priv = &d;
ctx.curve = &nist_curve_p192;
printf("\n d: ");
bigint_print_hex(&d);
printf_P(PSTR("\n Gx: "));
bigint_print_hex(&nist_curve_p192_basepoint.affine.x);
printf_P(PSTR("\n Gy: "));
bigint_print_hex(&nist_curve_p192_basepoint.affine.y);
// r = ecc_chudnovsky_multiplication(&q.chudnovsky, &d, &nist_curve_p192_basepoint.chudnovsky, &nist_curve_p192);
r = ecc_????
if(r){
printf_P(PSTR("ERROR: ecc_chudnovsky_multiplication() returned: %"PRIu8"\n"), r);
}
// r = ecc_chudnovsky_to_affine_point(&q.affine, &q.chudnovsky, &nist_curve_p192);
if(r){
printf_P(PSTR("ERROR: ecc_chudnovsky_to_affine_point() returned: %"PRIu8"\n"), r);
}
printf_P(PSTR("\n Qx: "));
bigint_print_hex(&q.affine.x);
printf_P(PSTR("\n Qy: "));
bigint_print_hex(&q.affine.y);
putchar('\n');
ctx.pub = &q.affine;
ecdsa_signature_alloc(&sign, sizeof(ecdsa_test_1_d) * sizeof(bigint_word_t));
r = ecdsa_sign_hash(&sign, hash, hfal_hash_getHashsize(hash_desc) / 8, &ctx, rnd);
if(r){
printf_P(PSTR("ERROR: ecdsa_sign_message() returned: %"PRIu8"\n"), r);
}
printf_P(PSTR(" r: "));
bigint_print_hex(&sign.r);
printf_P(PSTR("\n s: "));
bigint_print_hex(&sign.s);
free(hash);
ecdsa_signature_free(&sign);
ecc_chudnovsky_point_free(&q.chudnovsky);
}
#else
void test_sign1(void){
bigint_word_t d_w[sizeof(ecdsa_test_1_d)];
uint8_t rnd[sizeof(ecdsa_test_1_k)];
uint8_t *hash;
bigint_t d;
const hfdesc_t *hash_desc;
ecc_combi_point_t q;
ecdsa_signature_t sign;
ecdsa_ctx_t ctx;
uint8_t r;
putchar('\n');
d.wordv = d_w;
memcpy_P(rnd, ecdsa_test_1_k, sizeof(ecdsa_test_1_k));
memcpy_P(d_w, ecdsa_test_1_d, sizeof(ecdsa_test_1_d));
d.length_W = (sizeof(ecdsa_test_1_d) + sizeof(bigint_word_t) - 1) / sizeof(bigint_word_t);
d.info = 0;
bigint_adjust(&d);
hash_desc = &sha1_desc; //hash_select();
hash = malloc(hfal_hash_getHashsize(hash_desc) / 8);
if(hash == NULL){
printf_P(PSTR("DBG: XXX <%S %s %d>\n"), PSTR(__FILE__), __func__, __LINE__);
}
hash_mem_P(hash_desc, hash, ecdsa_test_1_msg, sizeof(ecdsa_test_1_msg) * 8);
printf_P(PSTR("msg hash: "));
cli_hexdump(hash, hfal_hash_getHashsize(hash_desc) / 8);
putchar('\n');
ecc_chudnovsky_point_alloc(&q.chudnovsky, nist_curve_p192_p.length_W * sizeof(bigint_word_t));
ctx.basepoint = &nist_curve_p192_basepoint.chudnovsky;
ctx.priv = &d;
ctx.curve = &nist_curve_p192;
printf("\n d: ");
bigint_print_hex(&d);
printf_P(PSTR("\n Gx: "));
bigint_print_hex(&nist_curve_p192_basepoint.affine.x);
printf_P(PSTR("\n Gy: "));
bigint_print_hex(&nist_curve_p192_basepoint.affine.y);
r = ecc_chudnovsky_multiplication(&q.chudnovsky, &d, &nist_curve_p192_basepoint.chudnovsky, &nist_curve_p192);
if(r){
printf_P(PSTR("ERROR: ecc_chudnovsky_multiplication() returned: %"PRIu8"\n"), r);
}
r = ecc_chudnovsky_to_affine_point(&q.affine, &q.chudnovsky, &nist_curve_p192);
if(r){
printf_P(PSTR("ERROR: ecc_chudnovsky_to_affine_point() returned: %"PRIu8"\n"), r);
}
printf_P(PSTR("\n Qx: "));
bigint_print_hex(&q.affine.x);
printf_P(PSTR("\n Qy: "));
bigint_print_hex(&q.affine.y);
putchar('\n');
ctx.pub = &q.affine;
ecdsa_signature_alloc(&sign, sizeof(ecdsa_test_1_d) * sizeof(bigint_word_t));
r = ecdsa_sign_hash(&sign, hash, hfal_hash_getHashsize(hash_desc) / 8, &ctx, rnd);
if(r){
printf_P(PSTR("ERROR: ecdsa_sign_message() returned: %"PRIu8"\n"), r);
}
printf_P(PSTR(" r: "));
bigint_print_hex(&sign.r);
printf_P(PSTR("\n s: "));
bigint_print_hex(&sign.s);
free(hash);
ecdsa_signature_free(&sign);
ecc_chudnovsky_point_free(&q.chudnovsky);
}
#endif
void test_sign2(void){
bigint_word_t d_w[sizeof(ecdsa_test_2_d)];
uint8_t rnd[sizeof(ecdsa_test_2_k)];
uint8_t *hash;
bigint_t d;
const hfdesc_t *hash_desc;
ecc_combi_point_t q;
ecdsa_signature_t sign;
ecdsa_ctx_t ctx;
uint8_t r;
putchar('\n');
d.wordv = d_w;
memcpy_P(rnd, ecdsa_test_2_k, sizeof(ecdsa_test_2_k));
memcpy_P(d_w, ecdsa_test_2_d, sizeof(ecdsa_test_2_d) * sizeof(bigint_word_t));
d.length_W = sizeof(ecdsa_test_2_d) / sizeof(bigint_word_t);
d.info = 0;
bigint_adjust(&d);
hash_desc = &sha224_desc; //hash_select();
hash = malloc(hfal_hash_getHashsize(hash_desc) / 8);
if(hash == NULL){
printf_P(PSTR("DBG: XXX <%S %s %d>\n"), PSTR(__FILE__), __func__, __LINE__);
}
hash_mem_P(hash_desc, hash, ecdsa_test_2_msg, sizeof(ecdsa_test_1_msg) * 8);
printf_P(PSTR("msg hash: "));
cli_hexdump(hash, hfal_hash_getHashsize(hash_desc) / 8);
putchar('\n');
ecc_chudnovsky_point_alloc(&q.chudnovsky, nist_curve_p192_p.length_W * sizeof(bigint_word_t));
ctx.basepoint = &nist_curve_p192_basepoint.chudnovsky;
ctx.priv = &d;
ctx.curve = &nist_curve_p192;
printf("\n d: ");
bigint_print_hex(&d);
printf_P(PSTR("\n Gx: "));
bigint_print_hex(&nist_curve_p192_basepoint.affine.x);
printf_P(PSTR("\n Gy: "));
bigint_print_hex(&nist_curve_p192_basepoint.affine.y);
r = ecc_chudnovsky_multiplication(&q.chudnovsky, &d, &nist_curve_p192_basepoint.chudnovsky, &nist_curve_p192);
if(r){
printf_P(PSTR("ERROR: ecc_chudnovsky_multiplication() returned: %"PRIu8"\n"), r);
}
r = ecc_chudnovsky_to_affine_point(&q.affine, &q.chudnovsky, &nist_curve_p192);
if(r){
printf_P(PSTR("ERROR: ecc_chudnovsky_to_affine_point() returned: %"PRIu8"\n"), r);
}
printf_P(PSTR("\n Qx: "));
bigint_print_hex(&q.affine.x);
printf_P(PSTR("\n Qy: "));
bigint_print_hex(&q.affine.y);
putchar('\n');
ctx.pub = &q.affine;
ecdsa_signature_alloc(&sign, sizeof(ecdsa_test_2_d) * sizeof(bigint_word_t));
r = ecdsa_sign_hash(&sign, hash, hfal_hash_getHashsize(hash_desc) / 8, &ctx, rnd);
if(r){
printf_P(PSTR("ERROR: ecdsa_sign_message() returned: %"PRIu8"\n"), r);
}
printf_P(PSTR(" r: "));
bigint_print_hex(&sign.r);
printf_P(PSTR("\n s: "));
bigint_print_hex(&sign.s);
free(hash);
ecdsa_signature_free(&sign);
ecc_chudnovsky_point_free(&q.chudnovsky);
}
/*****************************************************************************
* main *
*****************************************************************************/
const char echo_test_str[] PROGMEM = "echo-test";
const char reset_prng_str[] PROGMEM = "reset-prng";
const char quick_test_str[] PROGMEM = "quick-test";
const char performance_reduce_str[] PROGMEM = "performance_reduce";
const char performance_invert_str[] PROGMEM = "performance_invert";
const char performance_multiply_str[] PROGMEM = "performance_multiply";
const char genkey1_str[] PROGMEM = "genkey1";
const char genkey2_str[] PROGMEM = "genkey2";
const char genkey3_str[] PROGMEM = "genkey3";
const char genkey_str[] PROGMEM = "genkey";
const char testsign1_str[] PROGMEM = "testsign1";
const char testsign2_str[] PROGMEM = "testsign2";
const char square_str[] PROGMEM = "square";
const char echo_str[] PROGMEM = "echo";
const const cmdlist_entry_t cmdlist[] PROGMEM = {
// { reset_prng_str, NULL, reset_prng },
// { quick_test_str, NULL, quick_test },
{ square_str, NULL, testrun_square },
{ genkey_str, NULL, testrun_genkey },
{ genkey1_str, NULL, testrun_genkey1 },
{ genkey2_str, NULL, testrun_genkey2 },
{ genkey3_str, NULL, testrun_genkey3 },
{ testsign1_str, NULL, test_sign1 },
{ testsign2_str, NULL, test_sign2 },
{ performance_reduce_str, NULL, testrun_performance_reduce_bigint },
{ performance_invert_str, NULL, testrun_performance_invert_bigint },
{ performance_multiply_str, NULL, testrun_performance_multiply_bigint },
{ echo_str, (void*)1, (void_fpt)echo_ctrl },
{ NULL, NULL, NULL }
};
int main (void){
int8_t r;
main_setup();
calibrateTimer();
for(;;){
welcome_msg(algo_name);
r = cmd_interface(cmdlist);
printf("r = %"PRId8"\n", r);
cli_putstr_P(PSTR("\r\nHello!\r\n"));
}
}