avr-crypto-lib/test_src/main-rsaes_pkcs1v15-test.c

822 lines
25 KiB
C

/* main-dsa-test.c */
/*
This file is part of the ARM-Crypto-Lib.
Copyright (C) 2006-2015 Daniel Otte (bg@nerilex.org)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* RSA test-suit
*
*/
#include "main-test-common.h"
#include "noekeon.h"
#include "noekeon_prng.h"
#include "bigint.h"
#include "bigint_io.h"
#include "random_dummy.h"
#include "rsa_basic.h"
#include "rsaes_pkcs1v15.h"
#include "performance_test.h"
#define DEBUG 1
const char *algo_name = "RSAES-PKCS1V15";
#define BIGINT_CEIL(x) ((((x) + sizeof(bigint_word_t) - 1) / sizeof(bigint_word_t)) * sizeof(bigint_word_t))
#define BIGINT_OFF(x) ((sizeof(bigint_word_t) - (x) % sizeof(bigint_word_t)) % sizeof(bigint_word_t))
/*****************************************************************************
* additional validation-functions *
*****************************************************************************/
/* Modulus: */
const uint8_t modulus[] PROGMEM = {
0xa8, 0xb3, 0xb2, 0x84, 0xaf, 0x8e, 0xb5, 0x0b, 0x38, 0x70, 0x34, 0xa8, 0x60, 0xf1, 0x46, 0xc4,
0x91, 0x9f, 0x31, 0x87, 0x63, 0xcd, 0x6c, 0x55, 0x98, 0xc8, 0xae, 0x48, 0x11, 0xa1, 0xe0, 0xab,
0xc4, 0xc7, 0xe0, 0xb0, 0x82, 0xd6, 0x93, 0xa5, 0xe7, 0xfc, 0xed, 0x67, 0x5c, 0xf4, 0x66, 0x85,
0x12, 0x77, 0x2c, 0x0c, 0xbc, 0x64, 0xa7, 0x42, 0xc6, 0xc6, 0x30, 0xf5, 0x33, 0xc8, 0xcc, 0x72,
0xf6, 0x2a, 0xe8, 0x33, 0xc4, 0x0b, 0xf2, 0x58, 0x42, 0xe9, 0x84, 0xbb, 0x78, 0xbd, 0xbf, 0x97,
0xc0, 0x10, 0x7d, 0x55, 0xbd, 0xb6, 0x62, 0xf5, 0xc4, 0xe0, 0xfa, 0xb9, 0x84, 0x5c, 0xb5, 0x14,
0x8e, 0xf7, 0x39, 0x2d, 0xd3, 0xaa, 0xff, 0x93, 0xae, 0x1e, 0x6b, 0x66, 0x7b, 0xb3, 0xd4, 0x24,
0x76, 0x16, 0xd4, 0xf5, 0xba, 0x10, 0xd4, 0xcf, 0xd2, 0x26, 0xde, 0x88, 0xd3, 0x9f, 0x16, 0xfb
};
/* Public exponent: */
const uint8_t pub_exponent[] PROGMEM = { 0x01, 0x00, 0x01 };
/* Exponent: */
const uint8_t priv_exponent[] PROGMEM = {
0x53, 0x33, 0x9c, 0xfd, 0xb7, 0x9f, 0xc8, 0x46, 0x6a, 0x65, 0x5c, 0x73, 0x16, 0xac, 0xa8, 0x5c,
0x55, 0xfd, 0x8f, 0x6d, 0xd8, 0x98, 0xfd, 0xaf, 0x11, 0x95, 0x17, 0xef, 0x4f, 0x52, 0xe8, 0xfd,
0x8e, 0x25, 0x8d, 0xf9, 0x3f, 0xee, 0x18, 0x0f, 0xa0, 0xe4, 0xab, 0x29, 0x69, 0x3c, 0xd8, 0x3b,
0x15, 0x2a, 0x55, 0x3d, 0x4a, 0xc4, 0xd1, 0x81, 0x2b, 0x8b, 0x9f, 0xa5, 0xaf, 0x0e, 0x7f, 0x55,
0xfe, 0x73, 0x04, 0xdf, 0x41, 0x57, 0x09, 0x26, 0xf3, 0x31, 0x1f, 0x15, 0xc4, 0xd6, 0x5a, 0x73,
0x2c, 0x48, 0x31, 0x16, 0xee, 0x3d, 0x3d, 0x2d, 0x0a, 0xf3, 0x54, 0x9a, 0xd9, 0xbf, 0x7c, 0xbf,
0xb7, 0x8a, 0xd8, 0x84, 0xf8, 0x4d, 0x5b, 0xeb, 0x04, 0x72, 0x4d, 0xc7, 0x36, 0x9b, 0x31, 0xde,
0xf3, 0x7d, 0x0c, 0xf5, 0x39, 0xe9, 0xcf, 0xcd, 0xd3, 0xde, 0x65, 0x37, 0x29, 0xea, 0xd5, 0xd1
};
/* Prime 1: */
const uint8_t p[] PROGMEM = {
0xd3, 0x27, 0x37, 0xe7, 0x26, 0x7f, 0xfe, 0x13, 0x41, 0xb2, 0xd5, 0xc0, 0xd1, 0x50, 0xa8, 0x1b,
0x58, 0x6f, 0xb3, 0x13, 0x2b, 0xed, 0x2f, 0x8d, 0x52, 0x62, 0x86, 0x4a, 0x9c, 0xb9, 0xf3, 0x0a,
0xf3, 0x8b, 0xe4, 0x48, 0x59, 0x8d, 0x41, 0x3a, 0x17, 0x2e, 0xfb, 0x80, 0x2c, 0x21, 0xac, 0xf1,
0xc1, 0x1c, 0x52, 0x0c, 0x2f, 0x26, 0xa4, 0x71, 0xdc, 0xad, 0x21, 0x2e, 0xac, 0x7c, 0xa3, 0x9d
};
/* Prime 2: */
const uint8_t q[] PROGMEM = {
0xcc, 0x88, 0x53, 0xd1, 0xd5, 0x4d, 0xa6, 0x30, 0xfa, 0xc0, 0x04, 0xf4, 0x71, 0xf2, 0x81, 0xc7,
0xb8, 0x98, 0x2d, 0x82, 0x24, 0xa4, 0x90, 0xed, 0xbe, 0xb3, 0x3d, 0x3e, 0x3d, 0x5c, 0xc9, 0x3c,
0x47, 0x65, 0x70, 0x3d, 0x1d, 0xd7, 0x91, 0x64, 0x2f, 0x1f, 0x11, 0x6a, 0x0d, 0xd8, 0x52, 0xbe,
0x24, 0x19, 0xb2, 0xaf, 0x72, 0xbf, 0xe9, 0xa0, 0x30, 0xe8, 0x60, 0xb0, 0x28, 0x8b, 0x5d, 0x77
};
/* Prime exponent 1: */
const uint8_t dp[] PROGMEM = {
0x0e, 0x12, 0xbf, 0x17, 0x18, 0xe9, 0xce, 0xf5, 0x59, 0x9b, 0xa1, 0xc3, 0x88, 0x2f, 0xe8, 0x04,
0x6a, 0x90, 0x87, 0x4e, 0xef, 0xce, 0x8f, 0x2c, 0xcc, 0x20, 0xe4, 0xf2, 0x74, 0x1f, 0xb0, 0xa3,
0x3a, 0x38, 0x48, 0xae, 0xc9, 0xc9, 0x30, 0x5f, 0xbe, 0xcb, 0xd2, 0xd7, 0x68, 0x19, 0x96, 0x7d,
0x46, 0x71, 0xac, 0xc6, 0x43, 0x1e, 0x40, 0x37, 0x96, 0x8d, 0xb3, 0x78, 0x78, 0xe6, 0x95, 0xc1
};
/* Prime exponent 2: */
const uint8_t dq[] PROGMEM = {
0x95, 0x29, 0x7b, 0x0f, 0x95, 0xa2, 0xfa, 0x67, 0xd0, 0x07, 0x07, 0xd6, 0x09, 0xdf, 0xd4, 0xfc,
0x05, 0xc8, 0x9d, 0xaf, 0xc2, 0xef, 0x6d, 0x6e, 0xa5, 0x5b, 0xec, 0x77, 0x1e, 0xa3, 0x33, 0x73,
0x4d, 0x92, 0x51, 0xe7, 0x90, 0x82, 0xec, 0xda, 0x86, 0x6e, 0xfe, 0xf1, 0x3c, 0x45, 0x9e, 0x1a,
0x63, 0x13, 0x86, 0xb7, 0xe3, 0x54, 0xc8, 0x99, 0xf5, 0xf1, 0x12, 0xca, 0x85, 0xd7, 0x15, 0x83
};
/* Coefficient: */
const uint8_t qinv[] PROGMEM = {
0x4f, 0x45, 0x6c, 0x50, 0x24, 0x93, 0xbd, 0xc0, 0xed, 0x2a, 0xb7, 0x56, 0xa3, 0xa6, 0xed, 0x4d,
0x67, 0x35, 0x2a, 0x69, 0x7d, 0x42, 0x16, 0xe9, 0x32, 0x12, 0xb1, 0x27, 0xa6, 0x3d, 0x54, 0x11,
0xce, 0x6f, 0xa9, 0x8d, 0x5d, 0xbe, 0xfd, 0x73, 0x26, 0x3e, 0x37, 0x28, 0x14, 0x27, 0x43, 0x81,
0x81, 0x66, 0xed, 0x7d, 0xd6, 0x36, 0x87, 0xdd, 0x2a, 0x8c, 0xa1, 0xd2, 0xf4, 0xfb, 0xd8, 0xe1
};
/* PKCS#1 v1.5 encryption of 0x20, random messages with random s0xee,ds
* ---------------------------------------------------------------------------
*/
/* Message: */
const uint8_t message_x[] PROGMEM = {
0x66, 0x28, 0x19, 0x4e, 0x12, 0x07, 0x3d, 0xb0, 0x3b, 0xa9, 0x4c, 0xda, 0x9e, 0xf9, 0x53, 0x23,
0x97, 0xd5, 0x0d, 0xba, 0x79, 0xb9, 0x87, 0x00, 0x4a, 0xfe, 0xfe, 0x34
};
/* Seed: */
const uint8_t seed_x[] PROGMEM = {
0x01, 0x73, 0x41, 0xae, 0x38, 0x75, 0xd5, 0xf8, 0x71, 0x01, 0xf8, 0xcc, 0x4f, 0xa9, 0xb9, 0xbc,
0x15, 0x6b, 0xb0, 0x46, 0x28, 0xfc, 0xcd, 0xb2, 0xf4, 0xf1, 0x1e, 0x90, 0x5b, 0xd3, 0xa1, 0x55,
0xd3, 0x76, 0xf5, 0x93, 0xbd, 0x73, 0x04, 0x21, 0x08, 0x74, 0xeb, 0xa0, 0x8a, 0x5e, 0x22, 0xbc,
0xcc, 0xb4, 0xc9, 0xd3, 0x88, 0x2a, 0x93, 0xa5, 0x4d, 0xb0, 0x22, 0xf5, 0x03, 0xd1, 0x63, 0x38,
0xb6, 0xb7, 0xce, 0x16, 0xdc, 0x7f, 0x4b, 0xbf, 0x9a, 0x96, 0xb5, 0x97, 0x72, 0xd6, 0x60, 0x6e,
0x97, 0x47, 0xc7, 0x64, 0x9b, 0xf9, 0xe0, 0x83, 0xdb, 0x98, 0x18, 0x84, 0xa9, 0x54, 0xab, 0x3c,
0x6f };
/* Encryption: */
const uint8_t encrypted_x[] PROGMEM = {
0x50, 0xb4, 0xc1, 0x41, 0x36, 0xbd, 0x19, 0x8c, 0x2f, 0x3c, 0x3e, 0xd2, 0x43, 0xfc, 0xe0, 0x36,
0xe1, 0x68, 0xd5, 0x65, 0x17, 0x98, 0x4a, 0x26, 0x3c, 0xd6, 0x64, 0x92, 0xb8, 0x08, 0x04, 0xf1,
0x69, 0xd2, 0x10, 0xf2, 0xb9, 0xbd, 0xfb, 0x48, 0xb1, 0x2f, 0x9e, 0xa0, 0x50, 0x09, 0xc7, 0x7d,
0xa2, 0x57, 0xcc, 0x60, 0x0c, 0xce, 0xfe, 0x3a, 0x62, 0x83, 0x78, 0x9d, 0x8e, 0xa0, 0xe6, 0x07,
0xac, 0x58, 0xe2, 0x69, 0x0e, 0xc4, 0xeb, 0xc1, 0x01, 0x46, 0xe8, 0xcb, 0xaa, 0x5e, 0xd4, 0xd5,
0xcc, 0xe6, 0xfe, 0x7b, 0x0f, 0xf9, 0xef, 0xc1, 0xea, 0xbb, 0x56, 0x4d, 0xbf, 0x49, 0x82, 0x85,
0xf4, 0x49, 0xee, 0x61, 0xdd, 0x7b, 0x42, 0xee, 0x5b, 0x58, 0x92, 0xcb, 0x90, 0x60, 0x1f, 0x30,
0xcd, 0xa0, 0x7b, 0xf2, 0x64, 0x89, 0x31, 0x0b, 0xcd, 0x23, 0xb5, 0x28, 0xce, 0xab, 0x3c, 0x31
};
uint8_t keys_allocated = 0;
rsa_publickey_t pub_key;
rsa_privatekey_t priv_key;
#if 1
#define MSG message_x
#define SEED seed_x
#define ENCRYPTED encrypted_x
#define MODULUS modulus
#define PUB_EXPONENT pub_exponent
#define PRIV_EXPONENT priv_exponent
#define P p
#define Q q
#define DP dp
#define DQ dq
#define QINV qinv
#endif
uint8_t convert_nibble(uint8_t c){
if(c>='0' && c<='9'){
return c - '0';
}
c |= 'A' ^ 'a';
if(c>='a' && c<='f'){
return c - 'a' + 10;
}
return 0xff;
}
const char *block_ignore_string=" \t\r\n,;";
#define BUFFER_LIMIT 120
uint16_t read_os(void *dst, uint16_t length, const char *ignore_string){
uint16_t counter = 0;
uint16_t c;
uint8_t v, tmp = 0, idx = 0;
if(!ignore_string){
ignore_string = block_ignore_string;
}
while(counter < length){
c = cli_getc();
if(c > 0xff){
return counter;
}
if(strchr(ignore_string, c)){
continue;
}
v = convert_nibble(c);
if(v > 0x0f){
return counter;
}
if(idx){
((uint8_t*)dst)[counter++] = (tmp << 4) | v;
idx = 0;
if(counter % (BUFFER_LIMIT/2) == 0){
cli_putc('.');
}
}else{
tmp = v;
idx = 1;
}
}
return counter;
}
uint16_t own_atou(const char *str){
uint16_t r=0;
while(*str && *str >= '0' && *str <= '9'){
r *= 10;
r += *str++ - '0';
}
return r;
}
uint8_t read_bigint(bigint_t *a, char *prompt){
uint16_t read_length, actual_length;
uint8_t off;
uint8_t *buffer;
char read_int_str[18];
cli_putstr(prompt);
cli_putstr_P(PSTR("\r\n length: "));
cli_getsn(read_int_str, 16);
read_length = own_atou(read_int_str);
off = (sizeof(bigint_word_t) - (read_length % sizeof(bigint_word_t))) % sizeof(bigint_word_t);
buffer = malloc(((read_length + sizeof(bigint_word_t) - 1) / sizeof(bigint_word_t)) * sizeof(bigint_word_t));
if(!buffer){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 2;
}
cli_putstr_P(PSTR("\r\n data: "));
memset(buffer, 0, sizeof(bigint_word_t));
actual_length = read_os(buffer + off, read_length, NULL);
if(actual_length != read_length){
cli_putstr_P(PSTR("\r\nERROR: unexpected end of data!"));
free(buffer);
return 1;
}
a->wordv = (bigint_word_t*)buffer;
a->length_W = (read_length + sizeof(bigint_word_t) - 1) / sizeof(bigint_word_t);
a->info = 0;
bigint_changeendianess(a);
bigint_adjust(a);
return 0;
}
uint8_t pre_alloc_key_crt(void){
priv_key.n = 5;
priv_key.components = malloc(5 * sizeof(bigint_t));
if(!priv_key.components){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 2;
}
return 0;
}
void free_key(void){
uint8_t c;
free(pub_key.modulus.wordv);
free(pub_key.exponent.wordv);
for(c = 0; c < priv_key.n; ++c){
free(priv_key.components[c].wordv);
}
free(priv_key.components);
keys_allocated = 0;
}
uint8_t read_key_crt(void){
uint8_t r;
cli_putstr_P(PSTR("\r\n== reading key (crt) =="));
r = pre_alloc_key_crt();
if(r) return r;
r = read_bigint(&pub_key.modulus,"\r\n = module =");
if(r) return r;
memcpy(&priv_key.modulus, &pub_key.modulus, sizeof(bigint_t));
r = read_bigint(&pub_key.exponent,"\r\n = public exponent =");
if(r) return r;
r = read_bigint(&(priv_key.components[0]),"\r\n = p (first prime) =");
if(r) return r;
r = read_bigint(&(priv_key.components[1]),"\r\n = q (second prime) =");
if(r) return r;
r = read_bigint(&(priv_key.components[2]),"\r\n = dp (p's exponent) =");
if(r) return r;
r = read_bigint(&(priv_key.components[3]),"\r\n = dq (q's exponent) =");
if(r) return r;
r = read_bigint(&(priv_key.components[4]),"\r\n = qInv (q' coefficient) =");
return r;
}
uint8_t read_key_conv(void){
uint8_t r;
priv_key.components = malloc(sizeof(bigint_t));
if(!priv_key.components){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 2;
}
cli_putstr_P(PSTR("\r\n== reading key (conv) =="));
r = read_bigint(&pub_key.modulus,"\r\n = module =");
if(r) return r;
memcpy(&priv_key.modulus, &pub_key.modulus, sizeof(bigint_t));
priv_key.n = 1;
r = read_bigint(&pub_key.exponent,"\r\n = public exponent =");
if(r) return r;
r = read_bigint(priv_key.components,"\r\n = private exponent =");
return r;
}
uint8_t load_bigint_from_os(bigint_t *a, PGM_VOID_P os, uint16_t length_B){
a->length_W = BIGINT_CEIL(length_B) / sizeof(bigint_word_t);
a->wordv = malloc(BIGINT_CEIL(length_B));
if(!a->wordv){
cli_putstr_P(PSTR("\r\nOOM!\r\n"));
return 1;
}
memset(a->wordv, 0, sizeof(bigint_word_t));
memcpy_P((uint8_t*)a->wordv + BIGINT_OFF(length_B), os, length_B);
a->info = 0;
bigint_changeendianess(a);
bigint_adjust(a);
return 0;
}
void load_fix_rsa(void){
if(keys_allocated){
free_key();
}
keys_allocated = 1;
if(pre_alloc_key_crt()){
cli_putstr_P(PSTR("\r\nOOM!\r\n"));
return;
}
load_bigint_from_os(&pub_key.modulus, MODULUS, sizeof(MODULUS));
memcpy(&priv_key.modulus, &pub_key.modulus, sizeof(bigint_t));
load_bigint_from_os(&pub_key.exponent, PUB_EXPONENT, sizeof(PUB_EXPONENT));
priv_key.n = 5;
load_bigint_from_os(&(priv_key.components[0]), P, sizeof(P));
load_bigint_from_os(&(priv_key.components[1]), Q, sizeof(Q));
load_bigint_from_os(&(priv_key.components[2]), DP, sizeof(DP));
load_bigint_from_os(&(priv_key.components[3]), DQ, sizeof(DQ));
load_bigint_from_os(&(priv_key.components[4]), QINV, sizeof(QINV));
}
/*
uint8_t pre_alloc_key_crt(void){
uint8_t c;
pub_key.modulus = malloc(sizeof(bigint_t));
if(!pub_key.modulus){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 6;
}
priv_key.modulus = pub_key.modulus;
priv_key.n = 5;
priv_key.components = malloc(5 * sizeof(bigint_t*));
if(!priv_key.components){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 3;
}
pub_key.exponent = malloc(sizeof(bigint_t));
if(!pub_key.exponent){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 4;
}
for(c=0; c<5; ++c){
priv_key.components[c] = malloc(sizeof(bigint_t));
if(!priv_key.components[c]){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 7+c;
}
}
return 0;
}
void free_key(void){
uint8_t c;
for(c = priv_key.n; c > 0 ; --c){
free(priv_key.components[c - 1]->wordv);
}
free(pub_key.exponent->wordv);
free(pub_key.modulus->wordv);
for(c = priv_key.n; c > 0 ; --c){
free(priv_key.components[c - 1]);
}
free(pub_key.exponent);
pub_key.exponent = NULL;
free(priv_key.components);
priv_key.components = NULL;
free(pub_key.modulus);
pub_key.modulus = priv_key.modulus = NULL;
keys_allocated = 0;
}
uint8_t read_key_crt(void){
uint8_t r;
cli_putstr_P(PSTR("\r\n== reading key (crt) =="));
r = pre_alloc_key_crt();
if(r) return r;
r = read_bigint(pub_key.modulus,"\r\n = module =");
if(r) return r;
r = read_bigint(pub_key.exponent,"\r\n = public exponent =");
if(r) return r;
r = read_bigint(priv_key.components[0],"\r\n = p (first prime) =");
if(r) return r;
r = read_bigint(priv_key.components[1],"\r\n = q (second prime) =");
if(r) return r;
r = read_bigint(priv_key.components[2],"\r\n = dp (p's exponent) =");
if(r) return r;
r = read_bigint(priv_key.components[3],"\r\n = dq (q's exponent) =");
if(r) return r;
r = read_bigint(priv_key.components[4],"\r\n = qInv (q' coefficient) =");
#if DEBUG
cli_putstr_P(PSTR("\r\nmodulus:"));
bigint_print_hex(pub_key.modulus);
cli_putstr_P(PSTR("\r\npublic exponent:"));
bigint_print_hex(pub_key.exponent);
cli_putstr_P(PSTR("\r\np:"));
bigint_print_hex(priv_key.components[0]);
cli_putstr_P(PSTR("\r\nq:"));
bigint_print_hex(priv_key.components[1]);
cli_putstr_P(PSTR("\r\ndP:"));
bigint_print_hex(priv_key.components[2]);
cli_putstr_P(PSTR("\r\ndQ:"));
bigint_print_hex(priv_key.components[3]);
cli_putstr_P(PSTR("\r\nqInv:"));
bigint_print_hex(priv_key.components[4]);
#endif
return r;
}
uint8_t read_key_conv(void){
uint8_t r;
cli_putstr_P(PSTR("\r\n== reading key (crt) =="));
pub_key.modulus = malloc(sizeof(bigint_t));
if(!pub_key.modulus){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 2;
}
r = read_bigint(pub_key.modulus,"\r\n = module =");
if(r) return r;
priv_key.modulus = pub_key.modulus;
priv_key.n = 1;
pub_key.exponent = malloc(sizeof(bigint_t));
if(!pub_key.exponent){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 2;
}
priv_key.components = malloc(sizeof(bigint_t*));
if(!priv_key.components){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 2;
}
priv_key.components[0] = malloc(sizeof(bigint_t));
if(!priv_key.components[0]){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return 2;
}
r = read_bigint(pub_key.exponent,"\r\n = public exponent =");
if(r) return r;
r = read_bigint(priv_key.components[0],"\r\n = private exponent =");
return r;
}
void load_priv_conventional(void){
bigint_t *epriv;
epriv = malloc(sizeof(bigint_t));
if(!epriv){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
epriv->length_W = (sizeof(PRIV_EXPONENT) + sizeof(bigint_word_t) - 1) / sizeof(bigint_word_t);
epriv->wordv = malloc(epriv->length_W * sizeof(bigint_word_t));
if(!epriv->wordv){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
memcpy(epriv->wordv, PRIV_EXPONENT, sizeof(PRIV_EXPONENT));
priv_key.components = malloc(sizeof(bigint_t*));
priv_key.components[0] = epriv;
priv_key.n = 1;
bigint_changeendianess(epriv);
bigint_adjust(epriv);
}
void load_priv_crt_mono(void){
bigint_t **v;
const uint8_t *bv[5] = {P,Q,DP,DQ,QINV};
uint16_t sv[5] = {sizeof(P), sizeof(Q), sizeof(DP), sizeof(DQ), sizeof(QINV)};
uint8_t i;
v = malloc(5 * sizeof(bigint_t));
if(!v){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
priv_key.components = malloc(5*sizeof(bigint_t*));
if(!priv_key.components){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
priv_key.n = 5;
for(i=0; i<5; ++i){
v[i] = malloc(sizeof(bigint_t));
v[i]->info = 0;
v[i]->length_W = (sv[i] + sizeof(bigint_word_t) - 1) / sizeof(bigint_word_t);
v[i]->wordv = calloc(v[i]->length_W , sizeof(bigint_word_t));
if(!v[i]->wordv){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
memcpy(v[i]->wordv, bv[i], sv[i]);
bigint_changeendianess(v[i]);
bigint_adjust(v[i]);
priv_key.components[i] = v[i];
}
}
uint8_t load_bigint_from_os(bigint_t *a, PGM_VOID_P os, uint16_t length_B){
a->length_W = BIGINT_CEIL(length_B) / sizeof(bigint_word_t);
a->wordv = malloc(BIGINT_CEIL(length_B));
if(!a->wordv){
cli_putstr_P(PSTR("\r\nOOM!\r\n"));
return 1;
}
memset(a->wordv, 0, sizeof(bigint_word_t));
memcpy_P((uint8_t*)a->wordv + BIGINT_OFF(length_B), os, length_B);
a->info = 0;
bigint_changeendianess(a);
bigint_adjust(a);
return 0;
}
void load_fix_rsa(void){
if(keys_allocated){
free_key();
}
keys_allocated = 1;
if(pre_alloc_key_crt()){
cli_putstr_P(PSTR("\r\nOOM!\r\n"));
return;
}
load_bigint_from_os(pub_key.modulus, MODULUS, sizeof(MODULUS));
load_bigint_from_os(pub_key.exponent, PUB_EXPONENT, sizeof(PUB_EXPONENT));
priv_key.n = 5;
load_bigint_from_os(priv_key.components[0], P, sizeof(P));
load_bigint_from_os(priv_key.components[1], Q, sizeof(Q));
load_bigint_from_os(priv_key.components[2], DP, sizeof(DP));
load_bigint_from_os(priv_key.components[3], DQ, sizeof(DQ));
load_bigint_from_os(priv_key.components[4], QINV, sizeof(QINV));
// load_priv_conventional();
// load_priv_crt_mono();
}
*/
void quick_test(void){
uint8_t *ciphertext, *plaintext, rc;
uint8_t seed[sizeof(SEED)], seed_out[sizeof(SEED)];
uint16_t clen, plen;
if(!keys_allocated){
load_fix_rsa();
}
ciphertext = malloc(clen = bigint_length_B(&pub_key.modulus));
plaintext = malloc(clen);
memcpy_P(plaintext, MSG, sizeof(MSG));
memcpy_P(seed, SEED, sizeof(SEED));
cli_putstr_P(PSTR("\r\nplaintext:"));
cli_hexdump_block(plaintext, sizeof(MSG), 4, 16);
cli_putstr_P(PSTR("\r\nseed:"));
cli_hexdump_block(seed, sizeof(SEED), 4, 16);
cli_putstr_P(PSTR("\r\nencrypting: ..."));
rc = rsa_encrypt_pkcs1v15(ciphertext, &clen, plaintext, sizeof(MSG), &pub_key, seed);
if(rc){
cli_putstr_P(PSTR("\r\nERROR: rsa_encrypt_pkcs1v15 returned: "));
cli_hexdump_byte(rc);
return;
}
cli_putstr_P(PSTR("\r\n\r\nciphertext:"));
cli_hexdump_block(ciphertext, clen, 4, 16);
if(clen != sizeof(ENCRYPTED)){
cli_putstr_P(PSTR("\r\n>>FAIL (no size match)<<"));
return;
}else{
if(memcmp_P(ciphertext, ENCRYPTED, clen)){
cli_putstr_P(PSTR("\r\n>>FAIL (no content match)<<"));
return;
}else{
cli_putstr_P(PSTR("\r\n>>OK<<"));
}
}
cli_putstr_P(PSTR("\r\ndecrypting: ..."));
rc = rsa_decrypt_pkcs1v15(plaintext, &plen, ciphertext, clen, &priv_key, seed_out);
if(rc){
cli_putstr_P(PSTR("\r\nERROR: rsa_decrypt_pkcs1v15 returned: "));
cli_hexdump_byte(rc);
return;
}
cli_putstr_P(PSTR("\r\n\r\nplaintext:"));
cli_hexdump_block(plaintext, plen, 4, 16);
cli_putstr_P(PSTR("\r\n\r\nseed (out):"));
cli_hexdump_block(seed_out, sizeof(SEED), 4, 16);
free(ciphertext);
free(plaintext);
}
void run_seed_test(void){
uint8_t *msg, *ciph, *msg_;
uint16_t ciph_len, msg_len;
uint16_t msg_len_;
uint16_t seed_len;
uint8_t *seed, *seed_out;
char read_int_str[18];
cli_putstr_P(PSTR("\r\n== test with given seed =="));
cli_putstr_P(PSTR("\r\n = message ="));
cli_putstr_P(PSTR("\r\n length: "));
cli_getsn(read_int_str, 16);
msg_len = own_atou(read_int_str);
seed_len = rsa_pkcs1v15_compute_padlength_B(&pub_key.modulus, msg_len);
seed = malloc(seed_len);
#if DEBUG
cli_putstr_P(PSTR("\r\nDBG: @seed: 0x"));
cli_hexdump_rev(&seed, 2);
#endif
if(!seed){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
seed_out = malloc(seed_len);
#if DEBUG
cli_putstr_P(PSTR("\r\nDBG: @seed_out: 0x"));
cli_hexdump_rev(&seed_out, 2);
#endif
if(!seed_out){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
msg = malloc(msg_len);
#if DEBUG
cli_putstr_P(PSTR("\r\nDBG: @msg: 0x"));
cli_hexdump_rev(&msg, 2);
#endif
if(!msg){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
ciph = malloc(bigint_length_B(&pub_key.modulus));
#if DEBUG
cli_putstr_P(PSTR("\r\nDBG: @ciph: 0x"));
cli_hexdump_rev(&ciph, 2);
#endif
if(!ciph){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
msg_ = malloc(bigint_length_B(&pub_key.modulus) /* + sizeof(bigint_word_t) */ );
#if DEBUG
cli_putstr_P(PSTR("\r\nDBG: @msg_: 0x"));
cli_hexdump_rev(&msg_, 2);
#endif
if(!msg_){
cli_putstr_P(PSTR("\r\nERROR: OOM!"));
return;
}
cli_putstr_P(PSTR("\r\n data: "));
read_os(msg, msg_len, NULL);
cli_putstr_P(PSTR("\r\n seed (0x"));
cli_hexdump_rev(&seed_len, 2);
cli_putstr_P(PSTR(" bytes): "));
read_os(seed, seed_len, NULL);
cli_putstr_P(PSTR("\r\n encrypting ..."));
/*
cli_putstr_P(PSTR("\r\n plaintext:"));
cli_hexdump_block(msg, msg_len, 4, 16);
cli_putstr_P(PSTR("\r\n seed:"));
cli_hexdump_block(seed, seed_len, 4, 16);
*/
#if DEBUG
cli_putstr_P(PSTR("\r\n first prime:"));
bigint_print_hex(&priv_key.components[0]);
#endif
rsa_encrypt_pkcs1v15(ciph, &ciph_len, msg, msg_len, &pub_key, seed);
cli_putstr_P(PSTR("\r\n ciphertext:"));
cli_hexdump_block(ciph, ciph_len, 4, 16);
#if DEBUG
cli_putstr_P(PSTR("\r\n first prime:"));
bigint_print_hex(&priv_key.components[0]);
#endif
cli_putstr_P(PSTR("\r\n decrypting ... "));
rsa_decrypt_pkcs1v15(msg_, &msg_len_, ciph, ciph_len, &priv_key, seed_out);
cli_putstr_P(PSTR("[done]"));
if(msg_len != msg_len_){
char tstr[16];
cli_putstr_P(PSTR("\r\nERROR: wrong decrypted message length ("));
itoa(msg_len_, tstr, 10);
cli_putstr(tstr);
cli_putstr_P(PSTR(" instead of "));
itoa(msg_len, tstr, 10);
cli_putstr(tstr);
cli_putc(')');
goto end;
}
if(memcmp(msg, msg_, msg_len)){
cli_putstr_P(PSTR("\r\nERROR: wrong decrypted message:"));
cli_hexdump_block(msg_, msg_len_, 4, 16);
cli_putstr_P(PSTR("\r\nreference:"));
cli_hexdump_block(msg, msg_len, 4, 16);
goto end;
}
if(memcmp(seed, seed_out, seed_len)){
cli_putstr_P(PSTR("\r\nERROR: wrong decrypted seed:"));
cli_hexdump_block(seed_out, seed_len, 4, 16);
cli_putstr_P(PSTR("\r\nreference:"));
cli_hexdump_block(seed, seed_len, 4, 16);
goto end;
}
cli_putstr_P(PSTR("\r\n >>OK<<"));
end:
free(msg_);
free(ciph);
free(msg);
free(seed_out);
free(seed);
}
void reset_prng(void){
uint8_t buf[16];
memset(buf, 0, 16);
random_seed(buf);
cli_putstr_P(PSTR("\r\nPRNG reset"));
}
void rsa_init(void){
prng_get_byte = random8;
}
void load_key(void){
uint8_t r;
if(keys_allocated){
cli_putstr_P(PSTR("\r\nDBG: freeing old keys"));
free_key();
}
keys_allocated = 1;
r = read_key_crt();
if(r){
cli_putstr_P(PSTR("\r\nERROR: read_key_crt returned 0x"));
cli_hexdump_byte(r);
}
}
void test_dump(void){
char lstr[16];
int len;
cli_putstr_P(PSTR("\r\nenter dump length: "));
cli_getsn_cecho(lstr, 15);
len = own_atou(lstr);
cli_putstr_P(PSTR("\r\ndumping 0x"));
cli_hexdump_rev(&len, 2);
cli_putstr_P(PSTR(" byte:"));
cli_hexdump_block(pub_key.modulus.wordv, len, 4, 8);
}
/*****************************************************************************
* main *
*****************************************************************************/
const char echo_test_str[] PROGMEM = "echo-test";
const char reset_prng_str[] PROGMEM = "reset-prng";
const char load_key_str[] PROGMEM = "load-key";
const char load_fix_key_str[] PROGMEM = "load-fix-key";
const char quick_test_str[] PROGMEM = "quick-test";
const char seed_test_str[] PROGMEM = "seed-test";
const char dump_test_str[] PROGMEM = "dump-test";
const char performance_str[] PROGMEM = "performance";
const char echo_str[] PROGMEM = "echo";
const cmdlist_entry_t cmdlist[] PROGMEM = {
{ reset_prng_str, NULL, reset_prng },
{ load_key_str, NULL, load_key },
{ load_fix_key_str, NULL, load_fix_rsa },
{ quick_test_str, NULL, quick_test },
{ seed_test_str, NULL, run_seed_test },
{ dump_test_str, NULL, test_dump },
// { performance_str, NULL, testrun_performance_bigint },
{ echo_str, (void*)1, (void_fpt)echo_ctrl },
{ NULL, NULL, NULL }
};
void dump_sp(void){
uint8_t x;
uint8_t *xa = &x;
cli_putstr_P(PSTR("\r\nstack pointer: ~"));
cli_hexdump_rev(&xa, 4);
}
int main (void){
main_setup();
for(;;){
welcome_msg(algo_name);
rsa_init();
cmd_interface(cmdlist);
}
}