avr-crypto-lib/main-cast5-test.c

221 lines
5.8 KiB
C

/* main-cast5-test.c */
/*
This file is part of the Crypto-avr-lib/microcrypt-lib.
Copyright (C) 2008 Daniel Otte (daniel.otte@rub.de)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* cast5 test-suit
*
*/
#include "config.h"
#include "serial-tools.h"
#include "uart.h"
#include "debug.h"
#include "cast5.h"
#include "nessie_bc_test.h"
#include "performance_test.h"
#include "cli.h"
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
char* cipher_name = "cast-128 (cast5)";
/*****************************************************************************
* additional validation-functions *
*****************************************************************************/
void testrun_nessie_cast5(void){
nessie_bc_ctx.blocksize_B = 8;
nessie_bc_ctx.keysize_b = 128;
nessie_bc_ctx.name = cipher_name;
nessie_bc_ctx.ctx_size_B = sizeof(cast5_ctx_t);
nessie_bc_ctx.cipher_enc = (nessie_bc_enc_fpt)cast5_enc;
nessie_bc_ctx.cipher_dec = (nessie_bc_dec_fpt)cast5_dec;
nessie_bc_ctx.cipher_genctx = (nessie_bc_gen_fpt)cast5_init;
nessie_bc_run();
}
/*****************************************************************************
* self tests *
*****************************************************************************/
void cast5_ctx_dump(cast5_ctx_t *s){
uint8_t i;
uart_putstr("\r\n==== cast5_ctx_dump ====\r\n shortkey: ");
uart_putstr(s->shortkey?"yes":"no");
for(i=0;i<16;++i){
uint8_t r;
uart_putstr("\r\n Km"); uart_hexdump(&i, 1); uart_putc(':');
uart_hexdump(&(s->mask[i]), 4);
uart_putstr("\r\n Kr"); uart_hexdump(&i, 1); uart_putc(':');
r = (s->rotl[i/2]);
if (i&0x01) r >>= 4;
r &= 0xf;
r += (s->roth[i>>3]&(1<<(i&0x7)))?0x10:0x00;
uart_hexdump(&r, 1);
}
}
void test_encrypt(uint8_t *block, uint8_t *key, uint8_t keylength, bool print){
cast5_ctx_t s;
if (print){
uart_putstr("\r\nCAST5:\r\n key:\t");
uart_hexdump(key, keylength/8);
uart_putstr("\r\n plaintext:\t");
uart_hexdump(block, 8);
}
cast5_init(key, keylength, &s);
cast5_enc(block, &s);
if (print){
uart_putstr("\r\n ciphertext:\t");
uart_hexdump(block, 8);
}
}
void test_decrypt(uint8_t *block, uint8_t *key, uint8_t keylength, bool print){
cast5_ctx_t s;
if (print){
uart_putstr("\r\nCAST5:\r\n key:\t");
uart_hexdump(key, keylength/8);
uart_putstr("\r\n ciphertext:\t");
uart_hexdump(block, 8);
}
cast5_init(key, keylength, &s);
cast5_dec(block, &s);
if (print){
uart_putstr("\r\n plaintext:\t");
uart_hexdump(block, 8);
}
}
void testrun_cast5(void){
uint8_t block[8];
uint8_t key[16];
uint8_t *tda = (uint8_t*)"\x01\x23\x45\x67\x89\xAB\xCD\xEF",
*tka = (uint8_t*)"\x01\x23\x45\x67\x12\x34\x56\x78\x23\x45\x67\x89\x34\x56\x78\x9A";
memcpy(block, tda, 8);
memcpy(key, tka, 16);
test_encrypt(block, key, 128, true);
test_decrypt(block, key, 128, true);
memcpy(block, tda, 8);
memcpy(key, tka, 16);
test_encrypt(block, key, 80, true);
test_decrypt(block, key, 80, true);
memcpy(block, tda, 8);
memcpy(key, tka, 16);
test_encrypt(block, key, 40, true);
test_decrypt(block, key, 40, true);
/**** long test *****/
uart_putstr("\r\nmaintance-test");
uint8_t a[16]= {0x01, 0x23, 0x45, 0x67, 0x12,
0x34, 0x56, 0x78, 0x23, 0x45,
0x67, 0x89, 0x34, 0x56, 0x78,
0x9A},
b[16]= {0x01, 0x23, 0x45, 0x67, 0x12,
0x34, 0x56, 0x78, 0x23, 0x45,
0x67, 0x89, 0x34, 0x56, 0x78,
0x9A};
uint32_t i;
for(i=0;i<1000000; ++i){
test_encrypt(&(a[0]), &(b[0]), 128, false);
test_encrypt(&(a[8]), &(b[0]), 128, false);
test_encrypt(&(b[0]), &(a[0]), 128, false);
test_encrypt(&(b[8]), &(a[0]), 128, false);
if ((i&0x000000ff) == 0){
uart_putstr("\r\n");
uart_hexdump(&i, 4);
}
}
uart_putstr("\r\na = "); uart_hexdump(a, 16);
uart_putstr("\r\nb = "); uart_hexdump(b, 16);
}
void testrun_performance_cast5(void){
uint64_t t;
char str[6];
uint8_t key[16], data[16];
cast5_ctx_t ctx;
calibrateTimer();
print_overhead();
memset(key, 0, 16);
memset(data, 0, 16);
startTimer(1);
cast5_init(key, 128, &ctx);
t = stopTimer();
uart_putstr_P(PSTR("\r\n\tctx-gen time: "));
ultoa((unsigned long)t, str, 10);
uart_putstr(str);
startTimer(1);
cast5_enc(data, &ctx);
t = stopTimer();
uart_putstr_P(PSTR("\r\n\tencrypt time: "));
ultoa((unsigned long)t, str, 10);
uart_putstr(str);
startTimer(1);
cast5_dec(data, &ctx);
t = stopTimer();
uart_putstr_P(PSTR("\r\n\tdecrypt time: "));
ultoa((unsigned long)t, str, 10);
uart_putstr(str);
uart_putstr_P(PSTR("\r\n"));
}
/*****************************************************************************
* main *
*****************************************************************************/
int main (void){
char str[20];
DEBUG_INIT();
uart_putstr("\r\n");
uart_putstr_P(PSTR("\r\n\r\nCrypto-VS ("));
uart_putstr(cipher_name);
uart_putstr_P(PSTR(")\r\nloaded and running\r\n"));
PGM_P u = PSTR("nessie\0test\0performance\0");
void_fpt v[] = {testrun_nessie_cast5, testrun_cast5, testrun_performance_cast5};
while(1){
if (!getnextwordn(str,20)){DEBUG_S("DBG: W1\r\n"); goto error;}
if(execcommand_d0_P(str, u, v)<0){
uart_putstr_P(PSTR("\r\nunknown command\r\n"));
}
continue;
error:
uart_putstr("ERROR\r\n");
}
}