avr-crypto-lib/bcal/bcal-performance.c

226 lines
5.2 KiB
C

/* bcal-performance.c */
/*
This file is part of the AVR-Crypto-Lib.
Copyright (C) 2010 Daniel Otte (daniel.otte@rub.de)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* \file bcal-performance.c
* \author Daniel Otte
* \email daniel.otte@rub.de
* \date 2010-02-16
* \license GPLv3 or later
*
*/
#include "bcal-performance.h"
#include "keysize_descriptor.h"
#include "blockcipher_descriptor.h"
#include "performance_test.h"
#include "stack_measuring.h"
#include "cli.h"
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <avr/pgmspace.h>
#define PATTERN_A 0xAA
#define PATTERN_B 0x55
static
void printvalue(unsigned long v){
char str[20];
int i;
ultoa(v, str, 10);
for(i=0; i<10-strlen(str); ++i){
cli_putc(' ');
}
cli_putstr(str);
}
void bcal_performance(const bcdesc_t* bcd){
bcdesc_t bc;
memcpy_P(&bc, bcd, sizeof(bcdesc_t));
uint8_t ctx[bc.ctxsize_B];
uint8_t data[(bc.blocksize_b+7)/8];
uint16_t keysize = get_keysize(bc.valid_keysize_desc);
uint8_t key[(keysize+7)/8];
uint64_t t;
uint8_t i;
if(bc.type!=BCDESC_TYPE_BLOCKCIPHER)
return;
calibrateTimer();
print_overhead();
cli_putstr_P(PSTR("\r\n\r\n === "));
cli_putstr_P(bc.name);
cli_putstr_P(PSTR(" performance === "
"\r\n type: blockcipher"
"\r\n keysize (bits): "));
printvalue(keysize);
cli_putstr_P(PSTR("\r\n ctxsize (bytes): "));
printvalue(bc.ctxsize_B);
cli_putstr_P(PSTR("\r\n blocksize (bits): "));
printvalue(bc.blocksize_b);
t=0;
if(bc.init.init1){
if((bc.flags&BC_INIT_TYPE)==BC_INIT_TYPE_1){
for(i=0; i<32; ++i){
startTimer(0);
START_TIMER;
(bc.init.init1)(key, &ctx);
STOP_TIMER;
t += stopTimer();
if(i!=31 && bc.free){
bc.free(&ctx);
}
}
} else {
for(i=0; i<32; ++i){
startTimer(0);
START_TIMER;
(bc.init.init2)(key, keysize, &ctx);
STOP_TIMER;
t += stopTimer();
if(i!=31 && bc.free){
bc.free(&ctx);
}
}
}
t>>=5;
cli_putstr_P(PSTR("\r\n init (cycles): "));
printvalue(t);
}
t=0;
for(i=0; i<32; ++i){
startTimer(0);
START_TIMER;
bc.enc.enc1(data, &ctx);
STOP_TIMER;
t += stopTimer();
}
t>>=5;
cli_putstr_P(PSTR("\r\n encrypt (cycles): "));
printvalue(t);
t=0;
for(i=0; i<32; ++i){
startTimer(0);
START_TIMER;
bc.dec.dec1(data, &ctx);
STOP_TIMER;
t += stopTimer();
}
t>>=5;
cli_putstr_P(PSTR("\r\n decrypt (cycles): "));
printvalue(t);
if(bc.free){
bc.free(&ctx);
}
}
void bcal_stacksize(const bcdesc_t* bcd){
bcdesc_t bc;
stack_measuring_ctx_t smctx;
memcpy_P(&bc, bcd, sizeof(bcdesc_t));
uint8_t ctx[bc.ctxsize_B];
uint8_t data[(bc.blocksize_b+7)/8];
uint16_t keysize = get_keysize(bc.valid_keysize_desc);
uint8_t key[(keysize+7)/8];
uint16_t t1, t2;
if(bc.type!=BCDESC_TYPE_BLOCKCIPHER)
return;
cli_putstr_P(PSTR("\r\n\r\n === "));
cli_putstr_P(bc.name);
cli_putstr_P(PSTR(" stack-usage === "));
if(bc.init.init1){
if((bc.flags&BC_INIT_TYPE)==BC_INIT_TYPE_1){
cli();
stack_measure_init(&smctx, PATTERN_A);
bc.init.init1(&ctx, key);
t1 = stack_measure_final(&smctx);
stack_measure_init(&smctx, PATTERN_B);
bc.init.init1(&ctx, key);
t2 = stack_measure_final(&smctx);
sei();
} else {
cli();
stack_measure_init(&smctx, PATTERN_A);
bc.init.init2(&ctx, keysize, key);
t1 = stack_measure_final(&smctx);
stack_measure_init(&smctx, PATTERN_B);
bc.init.init2(&ctx, keysize, key);
t2 = stack_measure_final(&smctx);
sei();
}
t1 = (t1>t2)?t1:t2;
cli_putstr_P(PSTR("\r\n init (bytes): "));
printvalue((unsigned long)t1);
}
cli();
stack_measure_init(&smctx, PATTERN_A);
bc.enc.enc1(data, &ctx);
t1 = stack_measure_final(&smctx);
stack_measure_init(&smctx, PATTERN_B);
bc.enc.enc1(data, &ctx);
t2 = stack_measure_final(&smctx);
sei();
t1 = (t1>t2)?t1:t2;
cli_putstr_P(PSTR("\r\n encBlock (bytes): "));
printvalue((unsigned long)t1);
cli();
stack_measure_init(&smctx, PATTERN_A);
bc.dec.dec1(data, &ctx);
t1 = stack_measure_final(&smctx);
stack_measure_init(&smctx, PATTERN_B);
bc.dec.dec1(data, &ctx);
t2 = stack_measure_final(&smctx);
sei();
t1 = (t1>t2)?t1:t2;
cli_putstr_P(PSTR("\r\n decBlock (bytes): "));
printvalue((unsigned long)t1);
if(bc.free){
bc.free(&ctx);
}
}
void bcal_performance_multiple(const bcdesc_t* const* bcd_list){
const bcdesc_t* bcd;
for(;;){
bcd = (void*)pgm_read_word(bcd_list);
if(!bcd){
cli_putstr_P(PSTR("\r\n\r\n End of performance figures\r\n"));
return;
}
bcal_performance(bcd);
bcal_stacksize(bcd);
bcd_list = (void*)((uint8_t*)bcd_list + 2);
}
}