avr-crypto-lib/serpent/serpent.c

141 lines
3.3 KiB
C

/* serpent.c */
/*
This file is part of the AVR-Crypto-Lib.
Copyright (C) 2008 Daniel Otte (daniel.otte@rub.de)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* serpent.c
* a bitsliced implementation of the serpent cipher for avr microcontrollers
* author: Daniel Otte
* email: daniel.otte@rub.de
* license: GPLv3
*/
#include <stdint.h>
#include <string.h> /* memset() */
#include <avr/pgmspace.h>
#include "memxor.h"
#include "serpent.h"
#include "serpent-sboxes.h"
/******************************************************************************/
uint32_t rotl32(uint32_t a, uint8_t n){
return ((a<<n) | (a>>(32-n)));
}
uint32_t rotr32(uint32_t a, uint8_t n){
return ((a>>n) | (a<<(32-n)));
}
#define X0 (((uint32_t*)b)[0])
#define X1 (((uint32_t*)b)[1])
#define X2 (((uint32_t*)b)[2])
#define X3 (((uint32_t*)b)[3])
static void serpent_lt(uint8_t *b){
X0 = rotl32(X0, 13);
X2 = rotl32(X2, 3);
X1 ^= X0 ^ X2;
X3 ^= X2 ^ (X0 << 3);
X1 = rotl32(X1, 1);
X3 = rotl32(X3, 7);
X0 ^= X1 ^ X3;
X2 ^= X3 ^ (X1 << 7);
X0 = rotl32(X0, 5);
X2 = rotr32(X2, 10);
}
static void serpent_inv_lt(uint8_t *b){
X2 = rotl32(X2, 10);
X0 = rotr32(X0, 5);
X2 ^= X3 ^ (X1 << 7);
X0 ^= X1 ^ X3;
X3 = rotr32(X3, 7);
X1 = rotr32(X1, 1);
X3 ^= X2 ^ (X0 << 3);
X1 ^= X0 ^ X2;
X2 = rotr32(X2, 3);
X0 = rotr32(X0, 13);
}
#define GOLDEN_RATIO 0x9e3779b9l
static uint32_t serpent_gen_w(uint32_t * b, uint8_t i){
uint32_t ret;
ret = b[0] ^ b[3] ^ b[5] ^ b[7] ^ GOLDEN_RATIO ^ (uint32_t)i;
ret = rotl32(ret, 11);
return ret;
}
void serpent_init(const void* key, uint16_t keysize_b, serpent_ctx_t* ctx){
uint32_t buffer[8];
uint8_t i,j;
if(keysize_b<256){
/* keysize is less than 256 bit, padding needed */
memset(buffer, 0, 32);
memcpy(buffer, key, (keysize_b+7)/8);
((uint8_t*)buffer)[keysize_b/8] |= 1<<(keysize_b%8);
} else {
/* keysize is 256 bit */
memcpy(buffer, key, 32);
}
for(i=0; i<33; ++i){
for(j=0; j<4; ++j){
ctx->k[i][j] = serpent_gen_w(buffer, i*4+j);
memmove(buffer, &(buffer[1]), 7*4); /* shift buffer one to the "left" */
buffer[7] = ctx->k[i][j];
}
}
for(i=0; i<33; ++i){
sbox128(ctx->k[i],3-i);
}
}
void serpent_enc(void* buffer, const serpent_ctx_t* ctx){
uint8_t i;
for(i=0; i<31; ++i){
memxor(buffer, ctx->k[i], 16);
sbox128(buffer, i);
serpent_lt((uint8_t*)buffer);
}
memxor(buffer, ctx->k[i], 16);
sbox128(buffer, i);
++i;
memxor(buffer, ctx->k[i], 16);
}
void serpent_dec(void* buffer, const serpent_ctx_t* ctx){
int8_t i=32;
memxor(buffer, ctx->k[i], 16);
--i;
inv_sbox128(buffer, i);
memxor((uint8_t*)buffer, ctx->k[i], 16);
--i;
for(; i>=0; --i){
serpent_inv_lt(buffer);
inv_sbox128(buffer, i);
memxor(buffer, ctx->k[i], 16);
}
}